EGR1 is essential for transcriptional regulation of BMPR2

Abstract

In this study, RLM-RACE was used to identify the transcriptional start site 387 bp upstream of the translational start. Evolutionarily conserved transcription factor binding sites were identified, and a series of luciferase reporter constructs driven by BMPR2 promoter elements used to determine their functional relevance. We found the promoter area from 983 bp to 90 bp upstream of the transcriptional start gave maximal activity, greater than longer constructs, with an area between 570 bp and 290 bp upstream of the transcriptional start containing an important repressor element. To characterize this repressor, we used a combination of EMSA, mutation of the EGR1 binding site, transfection with EGR1 and NAB1 constructs, and mutation of the NAB1 binding site within the EGR1 protein. From this we conclude that EGR1 is essential to BMPR2 transcription, but that NAB1 binding to EGR1 causes it to act as a repressor.

Share and Cite:

Gaddipati, R. , West, J. , Loyd, J. , Blackwell, T. , Lane, K. , Lane, N. and Lane, K. (2011) EGR1 is essential for transcriptional regulation of BMPR2. American Journal of Molecular Biology, 1, 131-139. doi: 10.4236/ajmb.2011.13014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Heldin, C.H., Miyazono, K. and ten Dijke, P. (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465-471. doi:10.1038/37284
[2] Ducy, P. and Karsenty, G. (2000) The family of bone morphogenetic proteins. Kidney International, 57, 2207-2214. doi:10.1046/j.1523-1755.2000.00081.x
[3] Bellusci, S., et al. (1996) Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development, 122, 1693-1702.
[4] Frisch, A. and Wright, C.V. (1998) XBMPRII, a novel Xenopus type II receptor mediating BMP signaling in embryonic tissues. Development, 125, 431-442.
[5] Hemmati-Brivanlou, A. and Thomsen, G.H. (1995) Ven-tral mesodermal patterning in Xenopus embryos: Expression patterns and activities of BMP-2 and BMP-4. Devepment and Genetics, 17, 78-89.
[6] Hild, M., et al. (2000) The roles of BMPs, BMP antagonists, and the BMP signaling transducers Smad1 and Smad5 during dorsoventral patterning of the zebrafish embryo. Ernst Schering Research Foundation Workshop, 29, 81-106.
[7] Smith, W.C. (1999) TGF beta inhibitors. New and unexpected requirements in vertebrate development. Trends in Genetics, 15, 3-5. doi:10.1016/S0168-9525(98)01641-2
[8] Thomsen, G.H. (1997) Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. Trends in Genetics, 13, 209-211. doi:10.1016/S0168-9525(97)01117-7
[9] Wozney, J.M. (1998) The bone morphogenetic protein family: Multifunctional cellular regulators in the embryo and adult. European Journal of Oral Sciences, 1, 1- 60-166.
[10] Iwasaki, S., et al. (1995) Distribution and characterization of specific cellular binding proteins for bone mor-phogenetic protein-2. Journal of Biological Chemistry, 270, 5476-82. doi:10.1074/jbc.270.10.5476
[11] Josso, N. and di Clemente, N. (1997) Serine/threonine kinase receptors and ligands. Current Opinion in Genetics and Development, 7, 371-377. doi:10.1016/S0959-437X(97)80151-7
[12] Kawabata, M., Imamura, T. and Miyazono, K. (1998) Signal transduction by bone morphogenetic proteins. Cytokine and Growth Factor Reviews, 9, 49-61. doi:10.1016/S1359-6101(97)00036-1
[13] Nohe, A., et al. (2002) The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. Journal of Biological Chemistry, 277, 5330-5338. doi:10.1074/jbc.M102750200
[14] Beppu, H., et al. (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Developmental Biology, 221, 249-258. doi:10.1006/dbio.2000.9670
[15] Kawabata, M., Chytil, A. and Moses, H.L. (1995) Cloning of a novel type II serine/threonine kinase receptor through interaction with the type I transforming growth factor-beta receptor. Journal of Biological Chemistry, 270, 5625-5630. doi:10.1074/jbc.270.10.5625
[16] Nohno, T., et al. (1995) Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors. Journal of Biological Chemistry, 270, 22522-22526. doi:10.1074/jbc.270.38.22522
[17] Cogan, J.D., et al. (2006) High frequency of BMPR2 exonic deletions/duplications in familial pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 174, 590-598. doi:10.1164/rccm.200602-165OC
[18] Deng, Z., et al. (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. American Journal of Human Genetics, 67, 737-744. doi:10.1086/303059
[19] Lane, K.B., et al. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nature Genetics, 26, 81-84. doi:10.1038/79226
[20] Thomson, J.R., et al. (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. Journal of Medicine Genetics, 37, 741-745. doi:10.1136/jmg.37.10.741
[21] Humphries, D.E., et al. (1994) Structure and expression of the promoter for the human type II transforming growth factor-beta receptor. Biochemical and Biophysical Research Communications, 203, 1020-1027. doi:10.1006/bbrc.1994.2284
[22] Ahn, B.H., et al. (2007) Phorbol myristate acetate-induced EGR-1 expression is suppressed by phospholipase D isozymes in human glioma cells. FEBS Letters, 581, 5940-5944. doi:10.1016/j.febslet.2007.11.077
[23] Dunnmon, P.M., et al. (1990) Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells. Journal of Molecular and Cellular Cardiology, 22, 901-910. doi:10.1016/0022-2828(90)90121-H
[24] Maass, A., et al. (1994) Mitogenic signals control translation of the early growth response gene-1 in myogenic cells. Biochemical and Biophysical Research Communications, 202, 1337-1346. doi:10.1006/bbrc.1994.2077
[25] You, L. and Jakowlew, S.B. (1997) Identification of early growth response gene-1 (EGR-1) as a phorbol myristate acetate-induced gene in lung cancer cells by differential mRNA display. American Journal of Respiratory and Critical Care Medicine, 17, 617-624.
[26] Sukhatme, V.P., et al. (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell, 53, 37-43. doi:10.1016/0092-8674(88)90485-0
[27] Matheny, C., Day, M.L. and Milbrandt, J. (1994) The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. Journal of Biological Chemistry, 269, 8176-8181.
[28] Kubosaki, A., et al. (2009) Genome-wide investigation of in vivo EGR-1 binding sites in monocytic differentiation. Genome Biology, 10, 41. doi:10.1186/gb-2009-10-4-r41
[29] Seyfert, V.L., et al. (1990) EGR-1 expression in surface Ig-mediated B cell activation. Kinetics and association with protein kinase C activation. Journal of Immunology, 145, 3647-3653.
[30] McCaffrey, T.A., et al. (2000)High-level expression of EGR-1 and EGR-1-inducible genes in mouse and human atherosclerosis. Journal of Clinical Investigation, 105, 653-662. doi:10.1172/JCI8592
[31] Lee, S.L., et al. (1996) Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (EGR-1). Science, 273, 1219-1221. doi:10.1126/science.273.5279.1219
[32] Sevetson, B.R., Svaren, J. and Milbrandt, J. (2000) A novel activation function for NAB proteins in EGR-dependent transcription of the luteinizing hormone beta gene. Journal of Biological Chemistry, 275, 9749-9757. doi:10.1074/jbc.275.13.9749
[33] Tourtellotte, W.G., et al. (2000) Functional compensation by EGR4 in EGR1-dependent luteinizing hormone regulation and Leydig cell steroidogenesis. Molecular and Cellular Biology, 20, 5261-5268. doi:10.1128/MCB.20.14.5261-5268.2000
[34] Swirnoff, A.H., et al. (1998) NAB1, a corepressor of NGFI-A (EGR-1), contains an active transcriptional repression domain. Molecular and Cellular Biology, 18, 512-524.
[35] Svaren, J., et al. (1996) NAB2, a corepressor of NGFI-A (EGR-1) and Krox20, is induced by proliferative and differentiative stimuli. Molecular and Cellular Biology, 16, 3545-3553.
[36] Russo, M.W., Sevetson, B.R. and Milbrandt, J. (1995) Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proceedings of the National Academy of Sciences, USA, 92, 6873-6877.
[37] Loots, G.G. and Ovcharenko, I. (2005) Dcode.org anthology of comparative genomic tools. Nucleic Acids Research, 33, 56-64. doi:10.1093/nar/gki355
[38] Wang, C., et al. (2005) EGR-1 negatively regulates expression of the sodium-calcium exchanger-1 in cardiomyocytes in vitro and in vivo. Cardiovascular Research, 65, 187-194. doi:10.1016/j.cardiores.2004.09.026
[39] Aldred, M.A., et al. (2007) Characterization of the BMPR2 5'-untranslated region and a novel mutation in pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 176, 819-824. doi:10.1164/rccm.200701-164OC
[40] Wang, H., et al. (2009) Novel promoter and exon mutations of the BMPR2 gene in Chinese patients with pulmonary arterial hypertension. European Journal of Human Genetics, 17, 1063-1069. doi:10.1038/ejhg.2009.3
[41] Beppu, H., et al. (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Developmental Biology, 221, 249-258. doi:10.1006/dbio.2000.9670
[42] Svaren, J., et al. (2000) EGR1 target genes in prostate carcinoma cells identified by microarray analysis. Journal of Biological Chemistry, 275, 38524-38531. doi:10.1074/jbc.M005220200
[43] Abdel-Malak, N.A., et al. (2009) Early growth response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 209-216. doi:10.1161/ATVBAHA.108.181073
[44] Lee, Y.S., et al. (2005) Adenoviral-mediated delivery of early growth response factor-1 gene increases tissue perfusion in a murine model of hindlimb ischemia. Molecular Therapy, 12, 328-336. doi:10.1016/j.ymthe.2005.03.027
[45] Fahmy, R.G., et al. (2003) Transcription factor EGR-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nature Medicine, 9, 1026-1032. doi:10.1038/nm905
[46] Szabo, I.L., et al. (2001) NSAIDs inhibit the activation of Egr-1 gene in microvascular endothelial cells: A key to inhibition of angiogenesis? Journal of Physiology, Paris, 95, 379-383. doi:10.1016/S0928-4257(01)00051-1
[47] Sweet, M.J. and Hume, D.A. (1996) Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology, 60, 8-26.
[48] Dewachter, L., et al. (2009) Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension. European Respiratory Journal, 34, 1100-1110. doi:10.1183/09031936.00183008
[49] Rondelet, B., et al. (2005) Prevention of pulmonary vascular remodeling and of decreased BMPR-2 expression by losartan therapy in shunt-induced pulmonary hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 289, 2319-2324. doi:10.1152/ajpheart.00518.2005
[50] Pritchard, M.T. and Nagy, L.E. (2005) Ethanol-induced liver injury: Potential roles for EGR-1. Alcohol Clinical Experiment Research, 29, 146S-150S. doi:10.1097/01.alc.0000189286.81943.51
[51] Revest, J.M., et al. (2005) The MAPK pathway and EGR-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neuroscience, 8, 664-672. doi:10.1038/nn1441
[52] Quinones, A., Dobberstein, K.U. and Rainov, N.G. (2003) The EGR-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Science, 72, 2975-2992. doi:10.1016/S0024-3205(03)00230-3
[53] Yan, S.F., et al. (2000) EGR-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nature Medicine, 6, 1355-1361. doi:10.1038/82168
[54] Stula, M., et al. (2000) Influence of sustained mechanical stress on EGR-1 mRNA expression in cultured human endothelial cells. Molecular and Cellular Biochemistry, 210, 101-108. doi:10.1023/A:1007126218740

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.