Determination of Mercuric Ion in Water Samples with a LED Exciting and CCD Based Portable Spectrofluorimeter

Abstract

The fluorescent characteristics of a fluorimetric chemosensor for mercuric ion, Hg2+, employing a synthesized Rhodamine 6G derivative, have been analyzed. For that, a portable spectrofluorimeter composed of a 515 nm LED as excitation source, two fiber-optics and a CCD camera as detector, has been used, intended for “in situ” analysis. A highly selective Rhodamine based probe for Hg2+, that is water soluble and gives a positive response upon analyte binding, is reported. The reagent is bearing a monothiospirolactone group in a Rhodamine 6G architecture and the thiol atom served for the direct attack of thiophilic Hg2+. The fluorescence enhancement is attributed to the spirolactone ring opening and the coordination of two sulphur atoms to Hg2+ giving a 2:1 reagent: Hg2+ stoichiometry complex.

Share and Cite:

A. Peña, M. Rodríguez-Cáceres, D. Gil, M. Mahedero, M. Hurtado-Sánchez and R. Babiano, "Determination of Mercuric Ion in Water Samples with a LED Exciting and CCD Based Portable Spectrofluorimeter," American Journal of Analytical Chemistry, Vol. 2 No. 5, 2011, pp. 605-611. doi: 10.4236/ajac.2011.25068.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. E. Sánchez Uria and A. Sanz-Medel, “Inorganic and Methylmercury Speciation in Environmental Samples,” Talanta, Vol. 47, No. 3, 2008, pp. 509-524.
[2] M. Morita, J. Yoshinaga and J. S. Edmonds, “The Deter-mination of Mercury Species in Environmental and Bio-logical Samples,” Pure & Applied Chemistyr, Vol. 70, No. 8, 1998, pp. 1585-1615. doi:org/10.1351/pac199870081585
[3] E. M. Nolan and S. J. Lippard, “A “Turn-On” Fluorescent Sensor for the Selective Detection of Mercuric Ion in Aqueous Media,” Journal of the American Chemical So-ciety, Vol. 125, No. 47, 2003, pp. 14270-14271. doi:org/10.1021/ja037995g
[4] E. M. Nolan and S. J. Lippard, “Turn-On and Ratiometric Mercury Sensing in Water with a Red-Emmiting Probe,” Journal of the American Chemical Society, Vol. 129, No. 18, 2007, pp. 5910-5918. doi:org/10.1021/ja068879r
[5] E. M. Nolan, M. E. Racine and S. J. Lippard, “Selective Hg (II) Detection in Aqueous Solution with Thiol Deri-vatized Fluoresceins,” Inorganic Chemistry, Vol. 45, No. 6, 2006, pp. 2742-2749. doi:org/10.1021/ic052083w
[6] H. J. Kim, J. E. Park, M. G. Choi, S. Ahn and S. K. Chang, “Selective Chromogenic and Fluorogenic Signal-ling, of Hg2+ Ions Using a Fluorescein-Coumarin Conju-gate,” Dyes and Pigments, Vol. 84, No. 1, 2010, pp. 54-58. doi:org/10.1016/j.dyepig.2009.06.009
[7] Y. Jin, I. Yoon, J. Seo, J. E. Lee, S. T. Moon, J. Kim, S. W. Han, K. M. Park, L. F. Lindoy and S. S. Lee, “Cad-mium(II) and Mercury(Ii) Complexes of an NO2S2-Donor Macrocycle and Its Ditopic Xylyl-Bridged Analogue,” Dalton Transactions, Vol. 4, 2005, pp. 788-796. doi:org/10.1039/b415794
[8] J. Wang and X. Qian, “Two Regioisomeric and Exclu-sively Selective Hg(II) Sensor Molecules Composed of a Naphthalimide Fluorophore and an O-Phenylenediamine Derived Triamide Receptor,” Chemical Communication, Vol. 1, 2006, pp. 109-111. doi:org/10.1039/b511319a
[9] Q. Meng, X. Zhang, C. He, P. Zhou, W. Su and C. Duan, “A Hybrid Mesoporous Material Functionalized by 1,8-Naphthalimide-Base Receptor and the Application as Chemosensor and Absorbent for Hg2+ in Water,” Talanta, Vol. 84, No. 1, 2011, pp. 53-59. doi:org/10.1016/j.talanta.2010.12.008
[10] J. Wang and X. Qian, “A Series of Polyamide Receptor Based PET Fluorescent Sensor Molecules: Positively Cooperative Hg Ion Binding with High Sensitivity,” Or-ganic Letters, Vol. 8, No. 17, 2006, pp. 3721-3724. doi:org/10.1021/ol061297
[11] J. Du, J. Fan, X. Peng, H. Li, J. Wang and S. Sun, “Highly Selective and Anions Controlled Fluorescent Sensor for Hg2+ in Aqueous Environment,” Journal of Fluorescence, Vol. 18, No. 5, 2008, pp. 919-924. doi:org/10.1007/s10895-008-0324-3
[12] H. J. Kim, S. H. Kim, J. H. Kim, E. H. Lee, K. W. Lim and J. S. Kim, “BODIPY Appended Crown Ethers: Se-lective Fluorescence Changes for Hg2+ Binding,” Bulletin of the Korean Chemical Society, Vol. 29, No. 9, 2008, pp. 1831-1834. doi:org/10.5012/bkcs.2008.29.9.1831
[13] Y. K. Yang, K. J. Yook and J. Tae. “A Rhodamine-Based Fluorescent and Colorimetic Chemodosimeter for the Rapid Detection of Hg Ions in Aqueous Media,” Journal of the American Chemical Society, Vol. 127, No. 48, 2005, pp. 16760-16761. doi:org/10.1021/ja054855
[14] X. Q. Zhan, Z. H. Qian, H. Zheng, B. Y. Su, Z. Lan and J. G. Xu, “Rhodamine Thiospirolactone. Highly Selective and Sensitive Reversible Sensing of Hg(II),” Chemical Communication, Vol. 16, 2008, pp. 1859-1861. doi:org/10.1039/b719473
[15] W. Shi and H. Ma, “Rhodamine B thiolactone: a Simple Chemosensor for Hg2+ in Aqueous Media,” Chemical Communication, Vol. 16, 2008, pp. 1856-1858. doi:org/10.1039/b717718
[16] S. K. Ko, Y. K. Yang, J. Tae and I. Shin, “In vivo Moni-toring of Mercury Ions Using a Rhodamine-Based Mo-lecular Probe,” Journal of the American Chemical Society, Vol. 128, No. 43, 2006, pp. 14150-14155. doi:org/10.1021/ja065114
[17] H. Zheng, Z. H. Qian, L. Xu, F. F. Yuan, L. D. Lan and J. G. Xu, “Switching the Recognition Preference of Rho-Damine B Spirolactam by Replacing One Atom: Design of Rhodamine B Thiohydrazide for Recognition of Hg(II) in Aqueous Solution,” Organic Letters, Vol. 8, No. 5, 2006, pp. 859-861. doi:org/10.1021/ol0529086
[18] X. Q. Zhan, Z. H. Qian, H. Zheng, B. Y. Su, Z. Lan and J. G. Xu, “Rhodamine Thiospirolactone. Highly Sensitive Reversible Sensing of Hg2+,” Chemical Communication, 2008, pp. 1859-1861.
[19] H. N. Kim, S. W. Nam, K. M. K. Swamy, J. Yan, X. Chen, Y. Kim, S. J. Kim, S. Park and J. Yoon, “Rhoda-mine Hydrazone Derivatives as Hg2+ Selective Fluorescent and Colorimetric Chemosensors and Their Applications to iBoimaging and Microfluidic System,” Analyst, Vol. 136, No. 7, 2011, pp. 1339, 1343.
[20] Y. K. Yang, S. K. Ko, I. Shin and J. Tae, “Fluorescent Detection of Methylmercury by Desulfurization Reaction of Rhodamine Hydrazide Derivatives,” Organic and Biomolecular Chemistry, Vol. 7, No. 22, 2009, pp. 4590-4593. doi:org/10.1039/b915723a
[21] D. Bohoyo-Gil, M. I. Rodríguez-Cáceres, M. C. Hurtado- Sánchez and A. Mu?oz de La Pe?a, “Fluorescent Determination of Hg2+ in Water and Fish Samples Using a Chemo-Dosimeter Based in a Rhodamine 6G Derivative and a Portable-Optic Spectrofluorimeter,” Applied Specifications, Vol. 64, No. 5, 2010, pp. 520-527.
[22] A. Mu?oz de la Pe?a, M. I. Rodríguez-Cáceres, M. C. Hurtado-Sánchez and D. Bohoyo Gil, “A Novel Application of Hg2+ Based in a Spirocyclic Rhodamine 6G Phenyl-Thiosemicarbazide Derivative,” Luminiscence, Vol. 25, 2010, pp. 229-230.
[23] B. N. Ahamed and P. Ghosh, “An Integrated System of Pyrene and Rhodamine-6G for Selective Colorimetric and Fluorometric Sensing of Mercury(II),” Inorganica Chimicia Acta, 2011, doi:10.1016/j.ica.2011.01.071
[24] Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T. Nagano, “Highly Sensitive Fluorescence Probes for Nitric oxide Based on Boron Dipyrromethene Chromophore Rational Design of Potentially Useful Bioimaging Fluorescence Probe,” Journal of the American Chemical Society, Vol. 126, No. 10, 2004, pp. 3357-3367. doi:org/10.1021/ja037944j
[25] T. Nguyen and M. B. Francis, “Practical Synthetic Route to Functionalized Rhodamine Dyes,” Organic Letters, Vol. 5, No. 18, 2003, pp. 3245-3248. doi:org/10.1021/ol035135z
[26] M. A. Khan, “AlGaN Multiple Quantum Well Based Deep UV LEDs and Their Applications,” Solid State Physics, Vol. 203, No. 7, 2006, pp. 1764-1770. doi:org/10.1002/pssa.200565427
[27] E. F. Schubert, “Light-Emitting Diodes”, Cambridge Uni-versity Press (UK), Cambridge, 2003
[28] S. Landgraf, “Application of Semiconductor Light Sou- rces for Investigations of Photochemical Reactions,” Spectrochimica Acta A, Vol. 57, No. 10, 2001, pp. 2029- 2048. doi:org/10.1016/S1386-1425(01)00502-9
[29] X. Chen, S. W. Nam, M. J. Jou, Y. Kim, S. J. Kim, S. Park and J. Yoon, “Hg2+ Selective Fluorescent and Col-orimetric Sensor: Its Crystal Structure and Application to Bioimaging,” Organic Letters, Vol. 10, No. 22, 2008, pp. 5235-5238. doi:org/10.1021/ol8022598
[30] H. M. Irving, H. Freiser and T. S. West, “IUPAC Com-pendium of Analytical Nomenclature, Definitive Rules,” Pergamon Press, Oxford, 2004.
[31] C. A. Clayton, J. W. Hines and P. D. Elkins, “Detection limits with Specified Assurance Probabilities,” Analytical Chemistry, Vol. 59, No. 20, 1987, pp. 250. doi:org/10.1021/ac00147a014

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.