ZnO Nanoparticles: Synthesis and Adsorption Study
K. Prasad, Anal K. Jha
.
DOI: 10.4236/ns.2009.12016   PDF    HTML     19,173 Downloads   43,498 Views   Citations

Abstract

A low-cost, green and reproducible probiotic microbe (Lactobacillus sporogens) mediated biosynthesis of ZnO nanoparticles is reported. The synthesis is performed akin to room tem-perature in five replicate samples. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of ZnO nanoparticles. Rietveld analysis to the X-ray data indicated that ZnO nanoparticles have hexagonal unit cell structure. Individual nanoparticles having the size of 5-15 nm are found. A possible involved mechanism for the synthesis of ZnO nanoparticles has been pro-posed. The H2S adsorption characteristic of ZnO nanoparticles has also been assayed.

Share and Cite:

Prasad, K. and K. Jha, A. (2009) ZnO Nanoparticles: Synthesis and Adsorption Study. Natural Science, 1, 129-135. doi: 10.4236/ns.2009.12016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Jha, A.K., Prasad, K. and Prasad, K. (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Engg J, 43, 303-306.
[2] Jha, A.K., Prasad, K. and Kulkarni, A.R. (2009) Synthe-sis of TiO2 nanoparticles using microorganisms. Colloid Surf B: Bioint, 71, 226–229.
[3] Park, S., Lee, J.–H., Kim, H.–S., Park, H.–J. and Lee, J. C. (2009) Effects of ZnO nanopowder dispersion on photocatalytic reactions for the removal of Ag+ ions from aqueous solution. J Electroceram, 22, 105–109.
[4] Wang, Z.L. (2008) Energy harvesting for self-powered nanosystems. Nano Res, 1, 1-8.
[5] Botello-Méndez, A.R., López-Urías, F., Terrones, M. and Terrones, H. (2008) Enhanced ferromagnetism in ZnO nanoribbons and clusters passivated with sulfur. Nano Res, 1, 420-426.
[6] Grigorjeva, L., Millers, D., Grabis, J., Monty, C., Kalinko, A., Smits, K., Pankratov, V. and Lojkowski, W. (2008) Luminescence properties of ZnO nanocrystals and ce-ramics. IEEE Trans Nucl Sci, 55, 1551-1555.
[7] Daneshvar, N., Aber, S., Seyed Dorraji, M.S., Khataee, A.R. and Rasoulifard, M.H. (2008) Preparation and in-vestigation of photocatalytic properties of ZnO nanocrystals: effect of operational parameters and kinetic study. Int J Chem Biomol Engg, 1, 24-29.
[8] Lee, C.–Y., Haung, Y.–T., Su, W.–F. and Lin, C.-F. (2006) Electroluminescence from ZnO nanoparticles/organic nanocomposites. Appl Phys Lett, 89, 231116-231118.
[9] Tong, Y.H., Liu, Y.C., Lu, S.X., Dong, L., Chen, S.J. and Xiao, Z.Y. (2004) The optical properties of ZnO nanoparticles capped with polyvinyl butyral. J Sol-Gel Sci Tech, 30, 157-61.
[10] Moghaddam, A.B., Nazari, T., Badraghi, J. and Ka-zemzad, M. (2009) Synthesis of ZnO nanoparticles and electrodeposition of polypyrrole/ZnO nanocomposite film. Int J Electrochem Sci, 4, 247–257.
[11] Shokuhfar, T., Vaezi, M.R., Sadrnezhad, S.K. and Sho-kuhfar, A. (2008) Synthesis of zinc oxide nanopowder and nanolayer via chemical processing. Int J Nanomanu-facturing, 2, 149-162.
[12] Kim, S.–J. and Park, D.-W. (2007) Synthesis of ZnO nanopowder by thermal plasma and characterization of photocatalytic property. Appl Chem, 11, 377-380.
[13] Vaezi, M.R. and Sadrnezhaad, S. (2007) Nanopowder synthesis of zinc oxide via solochemical processing. Ma-ter Design, 28, 515–519.
[14] Ge, M.Y., Wu, H.P., Niu, L., Liu, J.F., Chen, S.Y., Shen, P.Y., Zeng, Y.W., Wang, Y.W., Zhang, G.Q. and Jiang, J.Z. (2007) Nanostructured ZnO: from monodisperse nanopar-ticles to nanorods. J Cryst Growth, 305, 162–166.
[15] Hambrock, J., Rabe, S., Merz, K., Birkner, A., Wohlfart, A., Fischer, R.A. and Driess, M. (2003) Low-temperature approach to high surface ZnO nanopowders and a non-aqueous synthesis of ZnO colloids using the sin-gle-source precursor [MeZnOSiMe3]4 and related zinc siloxides. J Mater Chem, 13, 1731–1736.
[16] Kwon, Y.J., Kim, K.H., Lim, C.S. and Shim, K.B. (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route. J Ceram Process Res, 3, 146-149.
[17] Prasad, K., Jha, A.K. and Kulkarni, A.R. (2008) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotech, in press.
[18] Prasad, K., Jha, A.K. and Kulkarni, A.R. (2007) Microbe mediated nano transformation: cadmium. NANO: Brief Rep Rev, 2, 239-242.
[19] Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H. and Nohi, A.-A. (2007) Rapid synthesis of silver nanoparticles using culture supernatants of entrobacteria: a novel biological approach. Process Biochem, 42, 919-923.
[20] Husseiny, M.I., Abd El-Aziz, M., Badr, Y. and Mahmoud, M.A. (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A, 67, 1003-1006.
[21] Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biotechnol, 19, 15-20.
[22] Gericke, M. and Pinches, A. (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy, 83, 132-140.
[23] Senapati, S., Ahmad, A., Khan, M.I., Sastry, M. and Kumar, R. (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small, 1, 517-520.
[24] Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralizar, K.M. and Balasubramanya, R.H. (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett, 61, 1413-1418.
[25] Mohanpuria, P., Rana, N.K. and Yadav, S.K. (2008) Bio-synthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10, 507-517.
[26] Mandal, D., Bolander, M.E., Mukhopadhyay, D., Sarkar, G. and Mukherjee, P. (2006) The use of microorganisms for the formation of metal nanoparticles and their appli-cation. Appl Microbiol Biotechnol, 69, 485-492.
[27] Bansal, V., Rautaray, D., Barred, A., Ahire, K., Sanyal, A. and Ahmad, A. (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem, 15, 2583-2589.
[28] Sadowski, Z., Maliszewska, I.H., Grochowalska, B., Polowczyk, I. and Ko?lecki, T. (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci-Poland, 26, 419-424.
[29] Joerger, R., Klaus, T. and Granqvist, C.G. (2001) Bio-logically produced silver-carbon composite materials for optically functional thin-film coating. Adv Mater, 12, 407-409.
[30] Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajaykumar, P.V., Alam, M., Kumar, R. and Sastry, M. (2001) Fun-gus–mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett, 1, 515-519.
[31] Ankamwar, B., Damle, C., Absar, A. and Sastry, M. (2005) Biosynthesis of gold and silver nanoparticles us-ing Emblica Officinalis fruit extract, their phase transfer and trans-metallation in an organic solution. J Nanosci Nanotechnol, 10, 1665-1671.
[32] Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Toroiani, H., Santiago, P. and Gardea-Torresdey, J.L. (2004) Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res, 6, 377-382.
[33] Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci, 275, 496-502.
[34] Jha, A. K., Prasad, K., Kumar, V. and Prasad, K. (2009) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog, in print.
[35] Nair, B. and Pradeep, T. (2002) Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design, 2, 293-298.
[36] Haimour, N., El-Bishtawi, R. and Ail-Wahbi, A. (2005) Equilibrium adsorption of hydrogen sulfide onto CuO and ZnO. Desalination, 181, 145-152.
[37] Duan, Z., Sun, R., Liu, R. and Zhu, C. (2007) Accurate thermodynamic model for the calculation of H2S solubil-ity in pure water and brines. Energ Fuel, 21, 2056-2065.
[38] Roisnel, J. and Rodr?guez-Carvajal, J. (2000) Win-PLOTR; laboratoire leon brillouin (CEA-CNRS) centre d’Etudes de saclay: gif sur yvette cedex. France.
[39] Rodriguez-Carvajal, J. (2000) FullProf: A Rietveld Re-finement and Pattern Matching Analysis Program, (Ver-sion: April 2008). Laboratoire Léon Brillouin (CEA-CNRS), France.
[40] Williamson, G.K. and Hall, W.H. (1953) X-ray line broadening from filed aluminum and wolfram. Acta Metall, 1, 22-31.
[41] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Lou?r, D. and Scardi, P. (1999) Rietveld refinement guidelines. J Appl Cryst, 32, 36-50.
[42] Fu, J.K., Liu, Y.Y., Gu, P.Y., Tang, D.L., Lin, Z.Y., Yao, B.X. and Wen, S.Z. (2000) Spectroscopic characteriza-tion on the biosorption and bioreduction of Ag(I) by Lactobacillus sp A09*. Acta Physico-Chimica Sinica, 16, 779-782.
[43] Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2009) Plant system: nature’s nanofactory. Colloid Surf B: Bioint, 73, 219-223.
[44] Jha, A.K., Prasad, K. and Prasad, K. (2009) Biosynthesis of Sb2O3 nanoparticles: A low cost green approach. Bio-technol J, in press.
[45] Davidson, E. (2004) Method and composition for scav-enging sulphide in drilling fluids. US Patent: 6476611.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.