Simultaneous Determination of Cadmium and Lead Using PEDOT/PSS Modified Glassy Carbon Electrode

Abstract

In this work, we report the simultaneous determination of cadmium and lead using glassy carbon electrodes (GCE) modified by poly(3,4-ethylenedioxythiophene) (PEDOT) for linear sweep anodic stripping voltammetry (LSASV). The modification allows metal detection without involving oxygen removal, mechanical stirring and introduction of alloying additions such as Hg, Bi, Sb, etc. during the pre-concentration step. Introduction of poly (4-styrenesulphonate) (PSS) as dopant in the PEDOT matrix improves reproducibility, stability and sensitivity in the detection. Both cadmium and lead peaks were readily quantifiable over the linear range of 2 - 10 ?g/ml and the detection limit being 1.47 ?g/ml and 1.15 ?g/ml respectively. The calibration plot shows a linear response with correlation coefficient of 0.9911 and 0.9944 for cadmium and lead respectively. Thus, the GC/PEDOT/PSS modified electrode suggested as a suitable matrix for rapid monitoring of these heavy metals at trace levels.

Share and Cite:

S. Anandhakumar, J. Mathiyarasu, K. Phani and V. Yegnaraman, "Simultaneous Determination of Cadmium and Lead Using PEDOT/PSS Modified Glassy Carbon Electrode," American Journal of Analytical Chemistry, Vol. 2 No. 4, 2011, pp. 470-474. doi: 10.4236/ajac.2011.24056.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Heitzmann, L. Basaez, F. Brovelli, C. Bucher, D. Limosin, E. Pereira, B. L. Rivas, G. Yal, E. Saint-Aman and J. C. Moutet, “Voltammetric Sensing of Trace Metals at a Poly (Pyrrole – Malonic Acid ) Film Modified Elec-trode,” Electroanalysis, Vol. 17, No. 21, 2005, pp. 1970- 1976. doi:10.1002/elan.200503325
[2] J. Wang, “Analytical Electrochemistry,” Wiley-VCH, New York, 1994.
[3] J. C. Ball and R. G. Compton, “Anodic Stripping Vol-tammetry at Hydrodynamic Mercury Electrodes. Square Wave Voltammetry: Numerical Theory for Electrochem-ically Reversible Systems,” Journal of Physical Chemistry B, Vol. 102, No. 20, 1998, pp. 3967-3973. doi:10.1021/jp980749k
[4] E. Fisher and C. M. G. Van den Berg, “Anodic Stripping Voltammetry of Lead and Cadmium Using a Mercury Film Electrode and Thiocyanate,” Analytica Chimica Acta, Vol. 385, No. 1-3, 1999, pp. 273-280. doi:10.1016/S0003-2670(98)00582-0
[5] V. P. Gladyshev, S. V. Kovaleva and N. A. Khramtsova, “Determination of Ammonium by Stripping Voltamme-try,” Journal of Analytical Chemistry, Vol. 56, No. 5, 2001, pp. 443-448. doi:10.1023/A:1016627003444
[6] J. Zen and Y. Ting, “Square-Wave Voltammetric Stripping Analysis of Lead (II) at a Nafion/Copper-Mercury Film Electrode,” Analytica Chimica Acta, Vol. 332, No. 1, 1996, pp. 59-65. doi:10.1016/0003-2670(96)00215-2
[7] J. Wang and B. Tian, “Screen-Printed Stripping Voltam-metric/Potentiometric Electrodes for Decentralized Testing of Trace Lead,” Analytica Chimica Acta, Vol. 64, No. 15, 1992, pp. 1706-1709.
[8] J. Wang, J. Lu, S. B. Hocevar and P. A. M. Farias, “Bis-muth – Coated Carbon Electrodes for Anodic Stripping Voltammetry,” Analytical Chemistry, Vol. 72, No. 14, 2000, pp. 3218-3222. doi:10.1021/ac000108x
[9] K. E. Toghil, G. G. Wildgoose, A. Moshar, C. Mulcahy and R. G. Compton, “The Fabrication and Characterization of a Bismuth Nanoparticle Modified Boron Doped Diamond Electrode and Its Application to the Simulta-neous Determination of Cadmium (II) and Lead (II),” Electroanalysis, Vol. 20, No. 16, 2008, pp. 1731-1737. doi:10.1002/elan.200804277
[10] K. Krishnamoorthy, R. S. Gokhale, A. Q. Contractor and A. Kumar, “Novel Label – Free DNA Sensors Based on Poly (3,4-ethylenedioxythiophene),” Chemical Commu-nications, Vol. 10, No. 7, 2004, pp. 820-821. doi:10.1039/b316794a
[11] H. Yamato, M. Ohwa and W. Wernet, “Stability of Poly-pyrrole and Poly (3,4-Ethylenedioxythiophene) for Bio-sensor Application,” Journal of Electroanalytical Chemi-stry, Vol. 397, No. 1-2, 1995, pp. 163-170. doi:10.1016/0022-0728(95)04156-8
[12] S. Senthilkumar, J. Mathiyarasu and K. L. N. Phani, “Ex-Ploration of Synergism between a Polymer Matrix and Gold Nanoparticles for Selective Determination of Do-pamine,” Journal of Electroanalytical Chemistry, Vol. 578, No. 1, 2005, pp. 95-103. doi:10.1016/j.jelechem.2004.12.023
[13] S. Senthilkumar, J. Mathiyarasu, K. L. N. Phani and Y. Yegnaraman, “Simultaneous Determination of Dopamine and Ascorbic Acid on Poly (3,4-Ethylenedioxythiophene) Modified Glassy Carbon Electrode,” Journal of Solid State Electrochemistry, Vol. 10, No. 11, 2006, pp. 905- 913. doi:10.1007/s10008-005-0041-7
[14] V. S. Vasantha and K. L. N. Phani, “Effect of Hydroxy-propyl-β-Cyclodextrin on the Electrochemical Oxidation and Polymerization of 3,4-Ethylenedioxythio- phene,” Journal of Electroanalytical Chemistry, Vol. 520, No. 1, 2002, pp. 79-88. doi:10.1016/S0022-0728(01)00748-3
[15] M. M. de Kok, M. Buechel1, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp, S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens and V. van Elsbergen, “Modification of PEDOT: PSS as Hole Injection Layer in Polymer LEDs,” Physica Status Solidi (A), Vol. 201, No. 6, 2004, pp. 1342-1359. doi:10.1002/pssa.200404338

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.