Theoretical Study on the Self, Water-assisted and Au-to-assisted Dimer Proton Transfer Reaction in the N-Hydroxy-Methylen-Formamide

Abstract

The proton transfer in the isolated, mono and dehydrated forms, isolated dimers of N-Hydroxy Methylen Formamide (NHMF) have been completely investigated in the present study using Density Functional Theory (DFT), Möller-Plesset perturbation (MP2) and Hartree-Fock (HF) methods with the 6-31G* and 6-311G* basis sets. The barrier heights for both H2O-assisted and auto-assistance reactions are significantly lower than that of the bare tautomerization reaction from NHMF to N-Formyl Formamide (NFF), implying the importance of the superior catalytic effect of H2O in the monomer of NHMF and important role of HOCH= N-COH for the intramolecular proton transfer.

Share and Cite:

R. Larabi, Y. Belmiloud and M. Brahimi, "Theoretical Study on the Self, Water-assisted and Au-to-assisted Dimer Proton Transfer Reaction in the N-Hydroxy-Methylen-Formamide," Open Journal of Physical Chemistry, Vol. 1 No. 2, 2011, pp. 37-44. doi: 10.4236/ojpc.2011.12006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Brahimi, Y. Belmiloud and D. Kheffache, “Hartree-Fock, Post Hartree-Fock and Density Functional Theory Studies on Structure and Conformationa,” Journal of Molecular Structure: THEOCHEM, Vol. 759, No. 1-3, 2006, pp. 1-10. doi:10.1016/j.theochem.2005.10.017
[2] C. Sandorfy, In: Saul Petai, Ed., The Chemistry of the Carbone-Nitrigene Double Bond, Interscience Publishers, New York, 1970, Chapter 1, p. 2.
[3] P. Bour, C. N. Tam, J. Sopkova and F. R. Trouw, “Measurement and Ab Initio Modeling of the Inelastic Neutron Scattering of Solid N-Methylformamide,” Journal of Chemical Physics, Vol. 108, No. 1, 1998, p. 351-359. doi:10.1063/1.475382
[4] V. R. Palakrishnan, G. Madrid, G. Cuevas and A. Thagler, Proceedings of the Indian National Science Academy: Chemical Science, Vol. 112, 2000, pp. 35.
[5] G. De Mare, Journal of Molecular Structure, Vol. 107, 1984, pp. 127-132.
[6] M. Nagaoka, Y. Okuno and T. Yamabe, Journal of the American Chemical Society, Vol. 113, 1991, pp. 769.
[7] A. Engdahl, B. Nelander and P. O. Astrand, “Complex Formation between Water and Formamide,” Journal of Chemical Physics, Vol. 99, No. 7, 1993, pp. 4894-4908. doi:10.1063/1.466039
[8] X. C. Wang, J. Nichols, M. Feyereisen, et al., “Ab Initio Quantum Chemistry Study of Formamide-Formamidic Acid Tautomerization,” Journal of Physical Chemistry, Vol. 95, No. 25, 1991, p. 10419-10424. doi:10.1021/j100178a032
[9] J. D. Pranata and D. Geraldine, “Computational Investigations of Reactive Intermediates in the Acid-Catalyzed Proton Exchange in Formamide,” Journal of Physical Chemistry, Vol. 99, No. 39, 1995, p. 14340-14346. doi:10.1021/j100039a022
[10] R. L. Bell, D. L. Taveras, T. N. truong and J. simons, “A Direct Ab Initio Dynamics Study of the Water-Assisted Tautomerization of Formamide,” International Journal of Quantum Chemistry, Vol. 63, No. 4, 1997, pp. 861-874.
[11] A.-P. Fu, H.-L. Li, D.-M. Du and Z.-Y. Zhou, “Theoretical Study on the Reaction Mechanism of Proton Transfer In Formamide,” Chemical Physics Letters, Vol. 382, No. 3-4, 2003, pp. 332-337. doi:10.1016/j.cplett.2003.10.070
[12] Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E
[13] C. M?ller and M. S. Plesset, “Note on an Approximation Treatment for Many-Electron Systems,” Physical Reviews, Vol. 46, No. 7, 1934, p. 618-622. doi:10.1103/PhysRev.46.618
[14] A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic-Behavior,” Physical Reviews A, Vol. 38, No. 6, 1998, pp. 3098-3100.
[15] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Reviews B, Vol. 37, No. 2, 1988, pp. 785-789.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.