Universe and Matter Conjectured as a 3-Dimensional Lattice with Topological Singularities

Download Download as PDF (Size:427KB)  HTML   XML  PP. 1389-1399  
DOI: 10.4236/jmp.2016.712126    828 Downloads   1,406 Views  
Author(s)    Leave a comment


One fundamental problem of modern physics is the search for a theory of everything able to explain the nature of space-time, what matter is and how matter interacts. There are various propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Superstring Theories, and M-Theory. However, none of them is able to consistently explain at the present and same time electromagnetism, relativity, gravitation, quantum physics and observed elementary particles. In this paper, one summarizes the content of a new book, published in English [2] and in French [3], in which it is suggested that Universe could be a massive elastic 3D-lattice, and that fundamental building blocks of Ordinary Matter could consist of topological singularities of this lattice, namely diverse dislocation loops and disclination loops. For an isotropic elastic lattice obeying Newton’s law, with specific assumptions on its elastic properties, one obtains the result that the behaviours of this lattice and of its topological defects display “all” known physics, unifying electromagnetism, relativity, gravitation and quantum physics, and resolving some longstanding questions of modern cosmology. Moreover, studying lattices with axial symmetries, represented by “colored” cubic 3D-lattices, one has identified a lattice structure whose topological defect loops coincide with the complex zoology of elementary particles, which could open a very promising field of research. Here, only main steps and principal results of the new theory are presented and discussed, without showing the mathematical concepts and developments contained in the book.

Cite this paper

Gremaud, G. (2016) Universe and Matter Conjectured as a 3-Dimensional Lattice with Topological Singularities. Journal of Modern Physics, 7, 1389-1399. doi: 10.4236/jmp.2016.712126.


[1] http://gerardgremaud.ch/en/
[2] Gremaud, G. (2016) Universe and Matter conjectured as a 3-dimensional Lattice with Topological Singularities. 646 p. (Available on [1])
[3] Gremaud, G. (2015) Univers et Matière conjecturés comme un Réseau Tridimensionnel avec des Singularités Topologiques. 660 p. (Available on [1])
[4] Gremaud, G. (2013) Théorie eulérienne des milieux déformables, charges de dislocation et de désinclinaison dans les solides. Presses polytechniques et universitaires romandes (PPUR), Lausanne, 750 p. (Available on [1])
[5] Gremaud, G. (2016) Eulerian Theory of Newtonian Deformable Lattices—Dislocation and Disclination Charges in Solids. 308 p. (Available on [1])
[6] Goenner, H.F.M. (2005) On the History of Unified Field Theories. Living Reviews in Relativity.
[7] Ross, G. (1984) Grand Unified Theories. Westview 1 Press, Boulder.
[8] Kiefer, C. (2007) Quantum Gravity. Oxford University Press, Oxford.
[9] Rovelli, C. (2011) Zakopane Lectures on Loop Gravity. arXiv:1102.3660.
[10] Wess, J. and Bagger, J. (1992) Supersymmetry and Supergravity. Princeton University Press, Princeton.
[11] Junker, G. (1996) Supersymmetric Methods in Quantum and Statistical Physics. Springer-Verlag, Berlin.
[12] Weinberg, S. (1999) The Quantum Theory of Fields. Volume 3: Super-symmetry. Cambridge University Press, Cambridge.
[13] Kane, G.L. and Shifman, M. (Eds.) (2000) The Supersymmetric World: The Beginnings of the Theory. World Scientific, Singapore.
[14] Kane, G.L. (2001) Supersymmetry: Unveiling the Ultimate Laws of Nature. Basic Books, New York
[15] Duplij, S., Duplii, W. and Siegel, J.B. (Eds.) (2005) Concise Encyclopedia of Supersymmetry. Springer, Berlin/New York. (2nd Printing)
[16] Green, M., Schwarz, J.H. and Witten, E. (1987) Superstring Theory. Vol. 1, Introduction; Vol. 2, Loop Amplitudes, Anomalies and Phenomenology. Cambridge University Press, Cambridge.
[17] Polchinski, J. (1998) String Theory. Vol. 1, An Introduction to the Bosonic String; Vol. 2, Superstring Theory and Beyond. Cambridge University Press, Cambridge.
[18] Johnson, C.V. (2003) D-Branes. Cambridge University Press, Cambridge.
[19] Zwiebach, B. (2004) A First Course in String Theory. Cambridge University Press, Cambridge.
[20] Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory: A Modern Introduction. Cambridge University Press, Cambridge.
[21] Dine, M. (2007) Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press, Cambridge.
[22] Kiritsis, E. (2007) String Theory in a Nutshell. Princeton University Press, Princeton.
[23] Szabo, R.J. (2007) An Introduction to String Theory and D-Brane Dynamics. Imperial College Press, London.
[24] Cremmer, E., Bernard, J. and Scherk, J. (1978) Physics Letters B, 76, 409-412.
[25] Bergshoeff, E., Sezgin, E. and Townsend, P. (1987) Physics Letters B, 189, 75-78.
[26] Duff, M. (1996) International Journal of Modern Physics A, 11, 5623-5641.
[27] Duff, M. (1998) Scientific American, 278, 64-69.
[28] Greene, B. (2010) The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W. W. Norton & Company, New York.
[29] Griffiths, D. (2004) Introduction to Quantum Mechanics. Prentice Hall, Upper Saddle River.
[30] Zwiebach, B. (2009) A First Course in String Theory. Cambridge University Press, Cambridge.
[31] Zee, A. (2010) Quantum Field Theory in a Nutshell. 2nd Edition, Princeton University Press, Princeton.
[32] Kaku, M. (2000) Strings, Conformal Fields, and M-Theory. 2nd Edition, Springer-Verlag, New York.
[33] Nye, J.F. (1953) Acta Metallurgica, 1, 153-162.
[34] Kondo, K. (1952) RAAG Memoirs of the Unifying Study of the Basic Problems in Physics and Engineering Science by Means of Geometry. Vol. 1, Gakujutsu Bunken Fukyu-Kay, Tokyo.
[35] Bilby, B.A., Bullough, R. and Smith, E. (1955) Proceedings of the Royal Society of London A, 231, 263-273.
[36] Cartan, E. (1922) C. r. hebd. séances Acad. sci. (CRAS), 174, p. 593 & C.R. Akad. Sci., 174, p. 734.
[37] Kröner, E. (1960) Archive for Rational Mechanics and Analysis, 4, 273-313.
[38] Kröner, E. (1980) Continuum Theory of Defects. In: Balian, R., et al., Eds., Physics of Defects, Les Houches, Session 35, North Holland, Amsterdam, 215-315.
[39] Zorawski, M. (1967) Théorie mathématique des dislocations. Dunod, Paris.
[40] Volterra, V. (1907) L’équilibre des corps élastiques. Ann. Ec. Norm, (3), XXIV, Paris.
[41] Hirth, J.-P. (1985) Metallurgical Transactions A, 16, 2085-2090.
[42] Orowan, E. (1934) Zeitschrift für Physik, 89, 605-613, 614-633, 634-659.
[43] Polanyi, M. (1934) Zeitschrift für Physik, 89, 660-664.
[44] Taylor, G.I. (1934) Proceedings of the Royal Society of London A, 145, 362-387.
[45] Burgers, J.M. (1939) Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 42, 293-378.
[46] Hirsch, P.B., Horne, R.W. and Whelan, M.J. (1956) Philosophical Magazine, 1, 677-684.
[47] Bollmann, W. (1956) Physical Review, 103, 1588-1589.
[48] Lehmann (1904) Flussige Kristalle. Engelman, Leibzig.
[49] Friedel, G. (1922) Annales de Physique, 18, 273.
[50] Whittaker, S.E. (1951) A History of the Theory of Aether and Electricity. Vol. 1, Dover Reprint, Mineola, 142.
[51] Unzicker, A. (2000) What Can Physics Learn from Continuum Mechanics? Ar-Xiv:gr-qc/0011064.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.