Pattern Recognition for Flank Eruption Forecasting: An Application at Mount Etna Volcano (Sicily, Italy)

Full-Text HTML XML Download Download as PDF (Size:3078KB) PP. 583-597
DOI: 10.4236/ojg.2016.67046    903 Downloads   1,059 Views  

ABSTRACT

A volcano can be defined as a complex system, not least for the hidden clues related to its internal nature. Innovative models grounded in the Artificial Sciences, have been proposed for a novel pattern recognition analysis at Mt. Etna volcano. The reference monitoring dataset dealt with real data of 28 parameters collected between January 2001 and April 2005, during which the volcano underwent the July-August 2001, October 2002-January 2003 and September 2004-April 2005 flank eruptions. There were 301 eruptive days out of an overall number of 1581 investigated days. The analysis involved successive steps. First, the TWIST algorithm was used to select the most predictive attributes associated with the flank eruption target. During his work, the algorithm TWIST selected 11 characteristics of the input vector: among them SO2 and CO2 emissions, and also many other attributes whose linear correlation with the target was very low. A 5 × 2 Cross Validation protocol estimated the sensitivity and specificity of pattern recognition algorithms. Finally, different classification algorithms have been compared to understand if this pattern recognition task may have suitable results and which algorithm performs best. Best results (higher than 97% accuracy) have been obtained after performing advanced Artificial Neural Networks, with a sensitivity and specificity estimates over 97% and 98%, respectively. The present analysis highlights that a suitable monitoring dataset inferred hidden information about volcanic phenomena, whose highly non-linear processes are enhanced.

Cite this paper

Brancato, A. , Buscema, P. , Massini, G. and Gresta, S. (2016) Pattern Recognition for Flank Eruption Forecasting: An Application at Mount Etna Volcano (Sicily, Italy). Open Journal of Geology, 6, 583-597. doi: 10.4236/ojg.2016.67046.

References

[1] Buscema, M. (2015) Why Mathematical Computer Simulations Are the New Laboratory for Scientists. Substance Use and Misuse, 50, 1058-1078.
http://dx.doi.org/10.3109/10826084.2015.1012934
[2] Buscema, M. (2010) The General Philosophy of the Artificial Adaptive Systems. In: Capecchi, V., Buscema, B., Contucci, P. and D’Amore, B., Eds., Applications of Mathematics in Models, Artificial Neural Networks and Arts, Springer Science+Business Media, 197-226.
http://dx.doi.org/10.1007/978-90-481-8581-8_10
[3] Brancato, A., Gresta, S., Alparone, S., Andronico, D., Bonforte, A., Caltabiano, T., Cocina, O., Corsaro, R.A., Cristofolini, R., Di Grazia, G., Distefano, G., Ferlito, C., Gambino, S., Giammanco, S., Greco, F., Marzocchi, W., Napoli, R., Sandri, L., Selva, J., Tusa, G. and Viccaro, M. (2011) BET_EF Application at Mount Etna: A Retrospective Analysis (Years 2001-2005). Annals of Geophysics, 54, 642-661.
[4] Mader, H.M. (2006) Volcanic Processes as a Source of Statistical Data. In: Mader, H.M., Coles, S.G., Connor, C.B. and Connor, L.J., Eds., Statistics in Volcanology, Special Publications of IAVCEI, Geological Society, London, 1-14.
[5] Buscema, M. (2004) Genetic Doping Algorithm (GenD): Theory and Application. Expert Systems, 21, 63-79.
http://dx.doi.org/10.1111/j.1468-0394.2004.00264.x
[6] Buscema, M., Breda, M. and Lodwick, W. (2013) Training with Input Selection and Testing (TWIST) Algorithm: A Significant Advance in Pattern Recognition Performance of Machine Learning. Journal of Intelligent Learning Systems and Applications, 5, 29-38.
http://dx.doi.org/10.4236/jilsa.2013.51004
[7] Buscema, M., Grossi, E., Intraligi, M., Garbagna, N., Andriulli, A. and Breda, M. (2005) An Optimized Experimental Protocol Based on Neuro-Evolutionary Algorithms. Application to the Classification of Dyspeptic Patients and to the Prediction of the Effectiveness of Their Treatment. Artificial Intelligence in Medicine, 34, 279-305.
http://dx.doi.org/10.1016/j.artmed.2004.12.001
[8] Penco, S., Grossi, E., Cheng, S., Intraligi, M., Maurelli, G., Patrosso, M.C., Marocchi, A. and Buscema, M. (2005) Assessment of the Role of Genetic Polymorphism in Venous Thrombosis through Artificial Neural Networks. Annals of Human Genetics, 69, 693-706.
http://dx.doi.org/10.1111/j.1529-8817.2005.00206.x
[9] Grossi, E., Mancini, A. and Buscema, M. (2007) International Experience on the Use of Artificial Neural Networks in Gastroenterology. Digestive and Liver Disease, 39, 278-285.
http://dx.doi.org/10.1016/j.dld.2006.10.003
[10] Grossi, E. and Buscema, M. (2007) Introduction to Artificial Neural Networks. European Journal of Gastroenterology & Hepatology, 19, 1046-1054.
http://dx.doi.org/10.1097/MEG.0b013e3282f198a0
[11] Grossi, E., Marmo, R., Intraligi, M. and Buscema, M. (2008) Artificial Neural Networks for Early Prediction of Mortality in Patients with Non-Variceal Upper GI Bleeding. Medical Informatics Insights, 1, 7-19.
[12] Lahner, E., Intraligi, M., Buscema, M., Centanni, M., Vannella, L., Grossi, E. and Annibale, B. (2008) Artificial Neural Networks in the Recognition of the Presence of Thyroid Disease in Patients with Atrophic Body Gastritis. World Journal of Gastroenterology, 14, 563-568.
http://dx.doi.org/10.3748/wjg.14.563
[13] Penco, S., Buscema, M., Patrosso, M.C., Marocchi, A. and Grossi, E. (2008) New Application of Intelligent Agents in Sporadic Amyotrophic Lateral Sclerosis Identifies Unexpected Specific Genetic Background. BMC Bioinformatics, 9, 254.
http://dx.doi.org/10.1186/1471-2105-9-254
[14] Street, M.E., Grossi, E., Volta, C., Faleschini, E. and Bernasconi, S. (2008) Placental Determinants of Fetal Growth: Identification of Key Factors in the Insulin-Like Growth Factor and Cytokine Systems Using Artificial Neural Networks. BMC Pediatrics, 8, 24.
http://dx.doi.org/10.1186/1471-2431-8-24
[15] Buri, L., Hassan, C., Bersani, G., Anti, M., Bianco, M.A., Cipolletta, L., Di Giulio, E., Di Matteo, G., Familiari, L., Ficano, L., Loriga, P., Morini, S., Pietropaolo, V., Zambelli, A., Grossi, E., Intraligi, M., Buscema, M. and SIED Appropriateness Working Group (2010) Appropriateness Guidelines and Predictive Rules to Select Patients for Upper Endoscopy: A Nationwide Multicenter Study. American Journal of Gastroenterology, 105, 1327-1337.
http://dx.doi.org/10.1038/ajg.2009.675
[16] Buscema, M., Grossi, E., Capriotti, M., Babiloni, C. and Rossini, P.M. (2010) The I.F.A.S.T. Model Allows the Prediction of Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment with High Degree of Accuracy, Current Alzheimer Research. Current Alzheimer Research, 7, 173-187.
http://dx.doi.org/10.2174/156720510790691137
[17] Pace, F., Riegler, G., de Leone, A., Pace, M., Cestari, R., Dominici, P., Grossi, E. and EMERGE Study Group (2010) Is It Possible to Clinically Differentiate Erosive from Nonerosive Reflux Disease Patients? A Study Using an Artificial Neural Networks-Assisted Algorithm. European Journal of Gastroenterology & Hepatology, 22, 1163-1168.
http://dx.doi.org/10.1097/MEG.0b013e32833a88b8
[18] Coppedè, F., Grossi, E., Migheli, F. and Migliore, L. (2010) Polymorphisms in Folate-Metabolizing Genes, Chromosome Damage, and Risk of Down Syndrome in Italian Women: Identification of Key Factors Using Artificial Neural Networks. BMC Medical Genomics, 3, 42.
http://dx.doi.org/10.1186/1755-8794-3-42
[19] Rotondano, G., Cipolletta, L. and Grossi, E. (2011) Artificial Neural Networks Accurately Predict Mortality in Patients with Nonvariceal Upper GI Bleeding. Gastrointestinal Endoscopy, 73, 218-226.
http://dx.doi.org/10.1016/j.gie.2010.10.006
[20] Frank, A. and Asuncion, A. (2010) UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml
[21] Dietterich, T.G. (1998) Approximate Statistical Test for Comparing Supervised Classification Learning Algorithm. Neural Computation, 10, 1895-1924.
http://dx.doi.org/10.1162/089976698300017197
[22] Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-0-387-84858-7
[23] Buscema, P.M. and Benzi, R. (2011) Quakes Prediction Using Highly Non-Linear Systems and a Minimal Dataset. In: Buscema, P.M. and Ruggieri, M., Eds., Advanced Networks, Algorithms and Modeling for Earthquake Prediction, River Publishers, Aalborg, 41-66.
[24] Buscema, P.M., Massini, G. and Maurelli, G. (2015) Artificial Adaptive Systems to Predict the Magnitude of Earthquakes. Bollettino di Geofisica Teorica ed Applicata, 56, 227-256.
[25] Buscema, M., Terzi, S. and Breda, M. (2006) Using Sinusoidal Modulated Weights Improve Feed-Forward Neural Network Performances in Classification and Functional Approximation Problems. WSEAS Transactions on Information Science & Applications, 3, 885-893.
[26] Le Cun, Y., Bottou, L., Orr, G.B. and Muller, K.R. (1998) Efficient BackProp. In: Orr, G. and Muller, K.R., Eds., Neural Networks: Tricks of the Trade, Springer, New York, 9-50.
http://dx.doi.org/10.1007/3-540-49430-8_2
[27] Buscema, M., Consonni, V., Ballabio, D., Mauri, A., Massini, G., Breda, M. and Todeschini, R. (2014) K-CM: A New Artificial Neural Network. Application to Supervised Pattern Recognition. Chemometrics and Intelligent Laboratory Systems, 138, 110-119.
http://dx.doi.org/10.1016/j.chemolab.2014.06.013
[28] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont.
[29] Breiman, L. (2001) Random Forest. Machine Learning, 45, 5-32.
http://dx.doi.org/10.1023/A:1010933404324
[30] Aha, D.W., Kibler, D. and Albert, M.K. (1991) Instance-Based Learning Algorithms. Machine Learning, 6, 37-66.
http://dx.doi.org/10.1007/BF00153759
[31] Platt, J. (1998) Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C.J.C. and Smola, A.J., Eds., Advances in Kernel Methods—Support Vector Learning, MIT Press, Cambridge, 41-65.
[32] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C. and Murthy, K.R.-K. (2001) Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation, 13, 637-649.
http://dx.doi.org/10.1162/089976601300014493
[33] Keerthi, S.S. and Gilbert, E.G. (2002) Convergence of a Generalized SMO Algorithm for SVM Classifier Design. Machine Learning, 46, 351-360.
http://dx.doi.org/10.1023/A:1012431217818
[34] Cessie, S. and Van Houwelingen, J.C. (1992) Ridge Estimators in Logistic Regression. Applied Statistics, 41, 191-201.
http://dx.doi.org/10.2307/2347628
[35] Friedman, N., Geiger, D. and Goldszmidt, M. (1997) Bayesian Networks Classifiers. Machine Learning, 29, 131-163.
http://dx.doi.org/10.1023/A:1007465528199
[36] Zhang, H. (2004) The Optimality of Naive Bayes. Proceedings of 17th International Florida Artificial Intelligence Research Society Conference, Menlo Park, 12-14 May 2004, 562-567.
[37] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009) The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter, 11, 10-18.
http://dx.doi.org/10.1145/1656274.1656278
[38] Buscema, M. (2006-2013) TWIST—Input Search and T&T Reverse. Semeion Software 39, Version 4.5. www.semeion.it
[39] Buscema, M. (1999-2015) Supervised ANNs and Organisms. Semeion Software 12, Version 25.0. www.semeion.it
[40] Mulargia, F., Gasperini, P. and Marzocchi, W. (1991) Pattern Recognition Applied to Vo1canic Activity: Identification of the Precursory Patterns to Etna Recent Flank Eruptions and Periods of Rest. Journal of Volcanology and Geothermal Research, 45, 187-196.
http://dx.doi.org/10.1016/0377-0273(91)90058-8
[41] Langer, H., Falsaperla, S., Masotti, M., Campanini, R., Spampinato, S. and Messina, A. (2009) Synopsis of Supervised and Unsupervised Pattern Classification Techniques Applied to Volcanic Tremor Data at Mt Etna, Italy. Geophysiscal Journal International, 178, 1132-114.
http://dx.doi.org/10.1111/j.1365-246X.2009.04179.x
[42] Masotti, M., Falsaperla, S., Langer, H., Spampinato, S. and Campanini, R. (2006) Application of Support Vector Machine to the Classification of Volcanictremor at Etna, Italy. Geophisical Research Letters, 33, Article ID: L20304.
[43] Falsaperla, S., Behncke, B., Langer, H., Neri, M., Salerno, G.G., Giammanco, S., Pecora, E. and Biale, E. (2014) “Failed” Eruptions Revealed by Pattern Classification Analysisof Gas Emission and Volcanic Tremor Data at Mt. Etna, Italy. International Journal of Earth Science, 103, 297-313.
http://dx.doi.org/10.1007/s00531-013-0964-7
[44] Buscema, M., Grossi, E., Bronstein, A., Lodwick, W., Asadi-Zeydabadi, M., Benzi, R. and Newman, F. (2013) A New Algorithm for Identifying Possible Epidemic Sources with Application to the German Escherichia Coli Outbreak. International Journal of Geo-Information, 2, 155-200.
http://dx.doi.org/10.3390/ijgi2010155

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.