Stable Nitrogen Isotopes (δ15N) in Podetias of Lichenized Fungi Cladonia pocillum from Different Altitudes of Habitats

Abstract

The δ15N values of stable nitrogen isotopes were determined in samples of organic matter (OM) of podetias of lichen Cladonia pocillums (Ach.) Grognot, collected across 10 altitudinal levels within the range of 1550 - 2900 m.a.s.l. of both steppes and highland meadows of the Khangai Mountains (Mongolia). No correlation between the δ15N values of lichen OM and the altitude range was detected at the regional scale. However, there is a positive correlation δ15N values in OM C. pocillums with of the nitrogen content in the podetias.

Share and Cite:

Biazrov, L. (2014) Stable Nitrogen Isotopes (δ15N) in Podetias of Lichenized Fungi Cladonia pocillum from Different Altitudes of Habitats. Open Access Library Journal, 1, 1-9. doi: 10.4236/oalib.1100511.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Galimov, E.M. (1981) Priroda Biologicheskogo Fraktsionirovaniya Izotopov (The Nature of Biological Fractionation of Isotopes). Nauka, Moscow.
[2] Robinson, D. (2001) δ15N as an Integrator of the Nitrogen Cycle. Trends in Ecology & Evolution, 16, 153-162.
http://dx.doi.org/10.1016/S0169-5347(00)02098-X
[3] Dawson, T.E., Mambelli, S., Plamboeck, A.H., Temper, P.H. and Tu., K.P. (2002) Stable Isotopes in Plant Ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 507-559.
http://dx.doi.org/10.1146/annurev.ecolsys.33.020602.095451
[4] Tiunov, A.V. (2007) Stable Isotopes of Carbon and Nitrogen in Soil Ecological Studies. Biology Bulletin, 34, 395-407.
http://dx.doi.org/10.1134/S1062359007040127
[5] Makarov, M.I. (2009) The Nitrogen Isotopic Composition in Soils and Plants: Its Use in Environmental Studies (Review). European Journal of Soil Science, 42, 1335-1348.
http://dx.doi.org/10.1134/S1064229309120035
[6] Hoefs, J. (2009) Stable Isotope Geochemistry. 6th Edition, Springer-Verlag, Berlin Heidelberg.
[7] Aelion, C.M., Hohener, P., Hunkeler, D. and Aravena, R. (2010) Environmental Isotopes in Biodegradation and Bioremidiation. CRC Press, Boca Raton.
[8] Fry, B. (2006) Stable Isotope Ecology. Springer Science + Business Media, LLC, Berlin.
[9] Lange, O. (1992) Pflanzenleben unter Stress: Flechten als Pioniere der Vegetation an Extremstandorten der Erde. Rostra Universitatis Wirceburgensis.
[10] Biazrov, L.G., Medvedev, L.N. and Chernova, N.M. (1971) Lichen Consortias in Deciduous Fir Forests of Moscow Suburbs. In: Biogeotsenologicheskie Issledovaniya v Shirokolistvenno-Elovykh Lesakh (Biogeocenological Studies in Deciduous Fir Forests), Nauka, Moscow, 252-270.
[11] Biazrov, L.G. (1995) Microarthropods and Decomposition Rate of Dead Epiphytic Lichen Hypogymnia physodes. Acta Zoologica Fennica, 196, 45-47.
[12] Baur, B. and Baur, A. (1997) Xanthoria parietina as a Food Resource and Shelter for the Land Snail Balea perversa. Lichenologist, 29, 99-102.
http://dx.doi.org/10.1017/S0024282997000145
[13] Schneider, K., Migge, S., Norton, R.A., Scheu, S., Langel, R., Reineking, A. and Maraun, M. (2004) Trophic Niche Differentiation in Soil Microarthropods (Oribatida, Acari): Evidence from Stable Isotope Ratios (15N/14N). Soil Biology & Biochemistry, 36, 1769-1774.
http://dx.doi.org/10.1016/j.soilbio.2004.04.033
[14] Erdmann, G., Otte, V., Langel, R., Scheu, S. and Maraun, M. (2007) The Trophic Structure of Bark-Living Oribatid Mite Communities Analysed with Stable Isotopes (15N, 13C) Indicates Strong Niche Differentiation. Experimental & Applied Acarology, 41, 1-10.
http://dx.doi.org/10.1007/s10493-007-9060-7
[15] Nash, T.H. (2008) Lichen Biology. 2nd Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511790478
[16] Honegger, R. (2009) Lichen-Forming Fungi and Their Photobionts. The Mycota, 5, 307-333.
[17] Palmqvist, K., Dahlman, L., Valladares, F., Tehler, A., Sancho, L.G. and Mattsson, J.E. (2002) CO2 Exchange and Thallus Nitrogen across 75 Contrasting Lichen Associations from Different Climate Zones. Oecologia, 133, 295-306.
http://dx.doi.org/10.1007/s00442-002-1019-0
[18] Fogel, M.L., Wooller, M.J., Cheeseman, J., Smallwood, B.J., Roberts, Q., Romero, I. and Meyers, M.J. (2008) Unusually Negative Nitrogen Isotopic Compositions (δ15N) of Mangroves and Lichens in an Oligotrophic, Microbially-Influenced Ecosystem. Biogeosciences, 5, 1693-1704.
http://dx.doi.org/10.5194/bg-5-1693-2008
[19] Huiskes, A.H.L., Boschker, H.T.S., Lud, D. and Moerdijk-Poortvliet, T.C.W. (2006) Stable Isotope Ratios as a Tool for Assessing Changes in Carbon and Nutrient Sources in Antarctic Terrestrial Ecosystems. Plant Ecology, 182, 79-86.
[20] Kappen, L. and Valladares, F. (2007) Opportunistic Growth and Desiccation Tolerance: The Ecological Success of Poikilohydrous Autotrophs. In: Functional Plant Ecololy, 7-65.
[21] Lange, O.L., Green, T.G.A. and Ziegler, H. (1988) Water Status Related Photosynthesis and Carbon Isotope Discrimination in Species of the Lichen Genus Pseudocyphellaria with Green or Blue-Green Photobionts and in Photosymbiodemes. Oecologia, 75, 494-501.
http://dx.doi.org/10.1007/BF00776410
[22] Øvstedal, D.O. and Smith, R.I.L. (2001) Lichens of Antarctica and South Georgia: A Guide for Their Identification and Ecology. Cambridge University Press, Cambridge.
[23] Biazrov, L.G., Ganbold, E., Gubanov, I.A. and Ulziikhutag, N. (1989) Flora Khangaya [The Khangai Flora]. Nauka, Leningrad.
[24] Máguas, C. and Brugnoli, E. (1996) Spatial Variation in Carbon Isotope Discrimination across the Thalli of Several Lichen Species. Plant, Cell & Environment, 19, 437-446.
http://dx.doi.org/10.1111/j.1365-3040.1996.tb00335.x
[25] Cuna, S., Balas, G. and Hauer, E. (2007) Effects of Natural Environmental Factors on δ13C of Lichens. Isotopes in Environmental and Health Studies, 43, 95-104.
http://dx.doi.org/10.1080/10256010701362401
[26] Biazrov, L.G., Gongalsky, K.B., Pelgunova, L.A. and Tiunov, A.V. (2010) Izotopnyi sostav ugleroda (δ13C) tallomov lishainikov v lesakh vblizi Chernobyl’skoi AES [Carbon Stable Isotope Composition (δ13C) of Lichen Thalli in the Forests in the Vicinity of the Chernobyl Atomic Power Station]. Radiazionnaya Biologia. Radioekologiya, 50, 98-105.
[27] (1982) Geomorfologiya Mongol’skoi Narodnoi Respubliki (Geomorphology of People’s Republic of Mongolia). Nauka, Moscow.
[28] Beresneva, I.A. (2006) Klimaty Aridnoi Zony Azii [Climatic Conditions of the Arid Zone of Asia]. Nauka, Moscow.
[29] Karamysheva, Z.V. and Banzragch, D. (1977) Some Botanical-Geographical Characteristics of the Khangai Related to Its Zoning. In: Rastitel’nyi I Zhivotnyi Mir Mongolii (Flora and Fauna of Mongolia), Nauka, Leningrad, 7-26.
[30] Biazrov, L.G. (1974) Lishainikovye Sinusii v Listvennichnike Raznotravnom (Lichen Synusiae in Herb Larch Forests). Botanicheskii Zhurnal, 59, 1425-1438.
[31] Biazrov, L.G. (1980) O Raspredelinii Fitomassy Lishainikov v Kedrovo-Listvennichnom Soobshchestve (Kangai, MNR) [The Distribution of Lichen Biomass in the Cedar-Larch Community (Khangai, MPR)]. Bjulleten’ Moskovskogo Obscestva Ispytatelej Pirody. Otdel Biologiceskij, 85, 117-123.
[32] Golubkova, N.S. and Biazrov, L.G. (1989) Life Forms of Lichen and Lichensynusiae. Botanicheskii Zhurnal, 74, 794-805.
[33] Golubkova, N.S. (1981) Konspect Flory Lishainikov Mongolyskoi Narodnoi Respupliki (Synopsis Lichen Flora of the Mongolian People’s Republic). Nauka, Leningrad.
[34] Biazrov, L.G. (2013) Checklist of the Momgoloan Lichens. Version 8.
http://www.sevin.ru/laboratories_eng/biazrov_mong.html
[35] Ellis, C.J., Crittenden, P.D., Scrimgeour, C.M. and Ashcroft, C. (2003) The Natural Abundance of 15N in Mat-Forming Lichens. Oecologia, 136, 115-123.
http://dx.doi.org/10.1007/s00442-003-1201-z
[36] Hietz, P., Wanek, W. and Popp, M. (1999) Stable Isotopic Composition of Carbon and Nitrogen and Nitrogen Content in Vascular Epiphytes along an Altitudinal Transect. Plant, Cell & Environment, 22, 1435-1443.
http://dx.doi.org/10.1046/j.1365-3040.1999.00502.x
[37] Huber, E., Wanek, W., Gottfried, M., Pauli, H., Schweiger, P., Arndt, S.K., Reiter, K. and Richter, A. (2007) Shift in Soil-Plant Nitrogen Dynamics of an Alpine-Nival Ecotone. Plant Soil, 301, 65-76.
[38] Männel, T.T., Auerswald, K. and Schnyder, H.T. (2007) Altitudinal Gradients of Grassland Carbon and Nitrogen Isotope Composition Are Recorded in the Hair of Grazers. Global Ecology and Biogeography, 16, 583-592.
[39] Liu, X.H., Zhao, L.J., Gasaw, M., Gao, D.Y., Qin, D.H. and Ren, J.W. (2007) Foliar δ13C and δ15N Values of C3 Plants in the Ethiopia Rift Valley and Their Environmental Controls. Chinese Science Bulletin, 52, 1265-1273.
http://dx.doi.org/10.1007/s11434-007-0165-5
[40] Liu, X.Z., Wang, G.A., Li, J.Z. and Wang, Q. (2010) Nitrogen Isotope Composition Characteristics of Modern Plants and Their Variations along an Altitudinal Gradient in Dongling Mountain in Beijing. Science in China Series D: Earth Sciences, 53, 128-140.
http://dx.doi.org/10.1007/s11430-009-0175-z
[41] Skrzypek, G., Jezierski, P. and Szynkiewicz, A. (2010) Preservation of Primary Stable Isotope Signatures of Peat-Forming Plants during Early Decomposition—Observation Along an Altitudinal Transect. Chemical Geology, 273, 238-249.
http://dx.doi.org/10.1016/j.chemgeo.2010.02.025
[42] Liu, X.Y., Xiao, H.Y., Liu, C.Q. and Li, Y.Y. (2008) Stable Carbon and Nitrogen Isotopes of the Moss Haplocladium microphyllum in an Urban and a Background Area (SW China): The Role of Environmental Conditions and Atmospheric Nitrogen Deposition. Atmospheric Environment, 42, 5413-5423.
http://dx.doi.org/10.1016/j.atmosenv.2008.02.038
[43] Zechmeister, H.G., Richter, A., Smidt, S., Hohenwallner, D., Roder, L., Maringer, S. and Wanek, W. (2008) Total Nitrogen Content and δ15N Signatures in Moss Tissue: Indicative Value for Nitrogen Deposition Patterns and Source Allocation on a Nationwide Scale. Environmental Science & Technology, 42, 8661-8667.
http://dx.doi.org/10.1021/es801865d

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.