Share This Article:

A Modified Averaging Composite Implicit Iteration Process for Common Fixed Points of a Finite Family of k-Strictly Asymptotically Pseudocontractive Mappings

Full-Text HTML Download Download as PDF (Size:97KB) PP. 204-209
DOI: 10.4236/apm.2011.14036    3,494 Downloads   7,518 Views   Citations

ABSTRACT

The composite implicit iteration process introduced by Su and Li [J. Math. Anal. Appl. 320 (2006) 882-891] is modified. A strong convergence theorem for approximation of common fixed points of finite family of k-strictly asymptotically pseudo-contractive mappings is proved in Banach spaces using the modified iteration process.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Igbokwe and O. Ini, "A Modified Averaging Composite Implicit Iteration Process for Common Fixed Points of a Finite Family of k-Strictly Asymptotically Pseudocontractive Mappings," Advances in Pure Mathematics, Vol. 1 No. 4, 2011, pp. 204-209. doi: 10.4236/apm.2011.14036.

References

[1] M. O. Osilike, A. Udomene, D. I. Igbokwe and B. G. Akuchu, “Demiclosedness Principle and Convergence Theorems for K-Strictly Asymptotically Pseudocontractive Maps,” Journal of Mathematical Analysis and Applications, Vol. 326, No. 2, 2007, pp. 1334-1345. doi:10.1016/j.jmaa.2005.12.052
[2] L. Qihou, “Convergence Theorems of the Sequence of Iterates for Asymptotially Demi-contractive and Hemicontractive Mappings,” Nonlinear Analy-sis, Vol. 26, No. 11, 1996, 1835-1842. doi:10.1016/0362-546X(94)00351-H
[3] M. O. Osilike, S. C. Aniagboso and G. B. Akachu, “Fixed Points of Asymptotically Demicontractive Mapping in Arbitrary Banach Space,” Pan American Mathematical Journal, Vol. 12, No. 2, 2002, pp. 77-88.
[4] F. E. Browder and W. V. Petryshyn, “Construc-tion of Fixed Points of Nonlinear Mappings in Hilbert Spaces,” Journal of Mathematical Analysis and Applications, Vol. 20, 1967, pp. 197-228. doi:10.1016/0022-247X(67)90085-6
[5] M. O. Osilike and A. Udomene, “Demiclosedness Principle and Convergence Re-sults for Strictly Pseudocontractive Mappings of Browder-Petryshyn Type,” Journal of Mathematical Analysis and Applications, Vol. 256, 2001, pp. 431-445. doi:10.1006/jmaa.2000.7257
[6] H. Zhou, “Demiclosedness Principle with Applictions for Asymptotically Pseudocontractions in Hilbert Spaces,” Nonlinear Analysis, Vol. 70, 2009, pp. 3140-3145. doi:10.1016/j.na.2008.04.017
[7] H. K Xu and R. G. Ori, “An Implicit Iteration Process for Nonexpansive Mappings,” Nu-merical Functional Analysis and Optimization, Vol. 22, 2001, pp. 767-733. doi:10.1081/NFA-100105317
[8] M. O. Osilike, “Implicit Iteration Process for Common Fixed Point of a Finite Family of Strictly Pseudo-contractive Maps,” Journal of Mathematical Analysis and Applications, Vol. 294, 2004, pp. 73-81. doi:10.1016/j.jmaa.2004.01.038
[9] Y. Su and S. Li, “Com-posite Implicit Iteration Process for Common Fixed Points of a Finite Family of Strictly Pseudocontractive Maps,” Journal of Mathematical Analysis and Applications, Vol. 320, 2006, pp. 882-891. doi:10.1016/j.jmaa.2005.07.038
[10] Z. H. Sun, “Strong Con-vergence of an Implicit Iteration Process for a Finite Family of Asymptotically Quasi- nonexpansive Mappings,” Journal of Mathematical Analysis and Applications, Vol. 286, 2003, pp. 351-358. doi:10.1016/S0022-247X(03)00537-7
[11] M. O. Osilike and B. G. Akuchu, “Common Fixed Points of a Finite Family of Asymptotically Pseudocontractive Maps,” Journal Fixed Points and Applications, Vol. 2, 2004, pp. 81-99. doi:10.1155/S1687182004312027
[12] C. E. Chidume, “Func-tional Analysis: Fundamental Theorems with Application,” International Centre for Theoretical Physics, Trieste Italy, 1995.
[13] L. C. Ceng, H. K. Xu and J. C. Yao, “Uniformly Normal Structure and Uniformly Lipschitzian Semigroups,” Nonlinear Analysis, Vol. 73, No. 12, 2010. doi:10.1016/j.na 2010.o7.044.
[14] W. V. Petryshyn, “A Characterization of Strict Convexity of Banach Spaces and Other Uses of Duality Mappings,” Journal of Functional Analysis, Vol. 6, 1970, pp. 282-291. doi:10.1016/0022-1236(70)90061-3

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.