Electronic Ratchet Nanodiodes
Kunyuan XU, Gang WANG
.
DOI: 10.4236/eng.2009.12015   PDF    HTML     5,775 Downloads   9,403 Views   Citations

Abstract

Using a two-dimensional ensemble Monte Carlo (EMC) method, electronic nanometer devices with different parameters are studied in detail. Calculation results show that at nanoscale the electric properties of interface inside the devices play an important role in determining the working properties of the devices. By properly arranging device structures, surface charges originated from device fabrication can be exploited to produce a predetermined electric potential in the devices. Based on this fact, two structures that can lead to an asymmetric potential along their nanochannel are proposed for designing strong nonlinear devices. Further studies indicate that Ratchet effect brought by the asymmetric potential results in diode-like current-voltage characteristics of the devices. Through optimizing device parameters, zero threshold voltage can be achieved, which is desired for detecting applications. Moreover, since the devices are at nanoscale, simulation results reveal that used as rectifiers the working frequencies can be up to a few THz.

Share and Cite:

K. XU and G. WANG, "Electronic Ratchet Nanodiodes," Engineering, Vol. 1 No. 2, 2009, pp. 127-131. doi: 10.4236/eng.2009.12015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Reimann, “Brownian motors: Noisy transport far from equilibrium,” Physical Report, Vol. 361, pp. 57-265, 2002.
[2] P. H?nggi, Fabio Marchesoni, and Franco Nori, “Brownian motors,” Annal of Physics (Leipzig), Vol. 14, pp. 51-70, 2005.
[3] J. Prost, J. F. Chauwin, L. Peliti, and A. Ajdari, “Asymmetric pumping of particles,” Physical Review Letters, Vol. 72, pp. 2652-2655, 1994.
[4] R. D. Astumian and M. Bier, “Fluctuation driven ratchets: Molecular motors,” Physical Review Letters, Vol. 72, pp. 1766-1769, 1994.
[5] C. R. Doering, W. Horsthemke, and J. Riordan, “Nonequilibrium fluctuation-induced transport,” Physical Review Letters, Vol. 72, pp. 2984-2987, 1994.
[6] M. I. Dykman, H. Rabitz, V. N. Smelyanskiy, and B. E. Vugmeister, “Resonant directed diffusion in nonadiabatically driven systems,” Physical Review Letters, Vol. 79, pp. 1178-1181, 1997.
[7] L. Sanchez-Palencia, “Resonant directed diffusion in nonadiabatically driven systems,” Physical Review E, Vol. 70, pp. 011102-1~4, 2004.
[8] P. Sj?lund, S. H. H. Petra, C. M. Dion, S. Jonsell, M. Nylén, L. Sanchez-Palencia, and A. Kastberg, “Resonant directed diffusion in nonadiabatically driven systems,” Physical Review Letters, Vol. 96, pp. 190602-1~4, 2006.
[9] P. H?nggi, R. Bartussek, P. Talkner, and J. ?uczka, “Noise-induced transport in symmetric periodic potentials: While shot noise versus deterministic noise,” Europhysical Letters, Vol. 35, pp. 315-317, 1996.
[10] T. Czernik and J. ?uczka, “Rectified steady flow induced by white shot noise: Diffusive and non-diffusive regimes,” Annal Physics (Leipzig), Vol. 9, pp. 721-734, 2000.
[11] R. H. Luchsinger, “Transport in nonequilibrium systems with position-dependent mobility,” Physical Review E, Vol. 62, 272-275, 2000.
[12] D. Dan, M. C. Mahato, and A. M. Jayannavar, “Motion in a rocked ratchet with spatially periodic friction,” Physical A, Vol. 296, 375-390, 2001.
[13] P. Reimann, M. Grifoni, and P. H?nggi, “Quantum ratchets,” Physical Review Letters, Vol. 79, pp. 10-13, 1997.
[14] H. Linke, T. E. Humphrey, A. L?fgren, A. O. Sushkov, R. Newbury, R. P. Taylor, and P. Omling, “Experimental tunneling ratchets,” Science, Vol. 286, 2314-2317, 1999.
[15] H. Linke, W. D. Sheng, A. L?fgren, H. Q. Xu, P. Omling, and P. E. Lindelof, “A quantum dot ratchet: Experiment and theory,” Europhysical Letters, Vol. 44, pp. 341-347, 1998.
[16] H. Linke, W. D. Sheng, A. Svensson, A. L?fgren, L. Christensson, H. Q. Xu, P. Omling, and P. E. Lindelof, “Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry,” Physical Review B, Vol. 61, pp. 15914-15926, 2000.
[17] A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, “Operation of InGaAs/InP-based ballistic rectifiers at room-temperature and frequencies up to 50 GHz,” Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. L909-L911, 2001.
[18] A. M. Song, P. Omling, L. Samuelson, W. Seifert, I. Shorubalko, and H. Zirath, “Room-temperature and 50 GHz operation of a functional nanomaterial,” Applied Physical Letters, Vol. 79, pp. 1357-1359, 2001.
[19] I. Shorubalko, H. Q. Xu, and I. Maximov, “Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions,” Applied Physical Letters, Vol. 79, pp. 1384-1386, 2001.
[20] I. Shorubalko, H. Q. Xu, I. Maximov, D. Nilsson, P. Omling, L. Samuelson, and W. Seifert, “A novel frequency-multiplication device based on three-terminal ballistic junction,” IEEE Electron Device Letters, Vol. 23, pp. 377-379, 2002.
[21] L. Worschech, B. Weidner, S. Reitzenstein, and A. Forchel, “Investigation of switching effects between the drains of an electron Y-branch switch,” Applied Physical Letters, Vol. 78, pp. 3325-3327, 2001.
[22] L. Worschech, H. Q. Xu, A. Forchel, and L. Samuelson, “Bias-voltage-induced asymmetry in nanoelectronic Y-branches,” Applied Physical Letters, Vol. 79, pp. 3287-3289, 2001.
[23] J. Mateos, B. G. Vasallo, D. Pardo, T. González, J. S. Galloo, Y. Roelens, S. Bollaert and A. Cappy, Nano- technology 14, Vol. 117, 2003.
[24] B. G. Vasallo, T. González, D. Pardo, and J. Mateos, “Monte carlo analysis of four-terminal ballistic rectifiers,” Nanotechnology, Vol. 15, pp. S250-S253, 2004.
[25] A. M. Song, M. Missous, P. Omling, A. R. Peaker, L. Samuelson, and W. Seifert, “Unidirectional electron flow in a nanometer-scale semiconductor channel: A self- switching device,” Applied Physical Letters, Vol. 83, pp. 1881-1883, 2003.
[26] C. Balocco, A. M. Song, M. ?berg, A. Forchel, T. González, J. Mateos, I. Maximov, M. Missous, A. A. Rezazadeh, J. Saijets, L. Samuelson, D. Wallin, K. Williams, L. Worschech, and H. Q. Xu, “Microwave detection at 110 GHz by naonwires with broken symmetry,” Nano Letters, Vol. 5, pp. 1423-1427, 2005.
[27] C. Balocco, M. Halsall, N. Q. Vinh, and A. M. Song, “THz operation of asymmetric-nanochannel devices,” Journal Physical Condensed Matter, Vol. 20, pp. 384203-1~5, 2008.
[28] J. Mateos, B. G. Vasallo, D. Pardo, and T. González, “Operation and high-frequency performance of nanoscale unipolar rectifying diodes,” Applied Physical Letters, Vol. 86, pp. 212103-1~3, 2005.
[29] I. I?iguez–de-la-Torre, J. Mateos, D. Pardo, and T. González, “Monte Carlo analysis of noise spectra in self-switching nanodiodes,” Jounal of Applied Physics, Vol. 103, 024502-1~6, 2008.
[30] J. Mateos, A. M. Song, B. G. Vasallo1, D. Pardo1, and T. González1, “THz operation of self-switching nano-devices and nano-transistors,” Proceedings of SPIE, Vol. 5838, pp. 145-153, 2005.
[31] I. I?iguez–de-la-Torre, J. Mateos, D. Pardo, A. M. Song, and T. González, “Noise and terahertz rectification linked by geometry in planar asymmetric nanodiodes,” Applied Physical Letters, Vol. 94, pp. 093512-1~3, 2009.
[32] K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, “Enhanced terahertz detection by localized surface plasma oscillations in a nanoscale unipolar diode,” Jounal of Applied Physical Letters, Vol. 103, pp. 113708-1~8, 2008.
[33] K. Y. Xu, X. F. Lu, A. M. Song, and G. Wang, “Terahertz harmonic generation using a planar nanoscale unipolar diode at zero bias,” Applied Physical Letters, Vol. 92, 163503-1~3, 2008.
[34] C. Jungemann and B. Meinerzhagen, “Hierarchical device simulation: The monte-carlo perspective,” Springer, New York, 2003.
[35] C. Jacoboni and P. Lugli, “The monte carlo method for semiconductor device simulation,” Springer, New York, 1989.
[36] K. Y. Xu, X. F. Lu, G. Wang, and A. M. Song, “Strong spatial dependence of electron velocity, density, and inter-valley scattering in an asymmetric nanodevice in the nonlinear transport regime”, IEEE Transactions on Nanotechnology, Vol. 7, pp. 451, 2008.
[37] S. -Y. Park, R. Yu, S. -Y. Chung, P. R. Berger, P. E. Thompson, and P. Fay, “Sensitivity of Si-based zero-bias backward diodes for microwave detection,” IEEE Electronical Letters, Vol. 43, pp. 53-54, 2007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.