Share This Article:

Size-Tunable Porous Anodic Alumina Nano-Structure for Biosensing

Full-Text HTML XML Download Download as PDF (Size:651KB) PP. 55-60
DOI: 10.4236/snl.2011.13010    5,163 Downloads   10,715 Views   Citations

ABSTRACT

A porous anodic alumina (PAA) film has been investigated to realise highly-ordered nano-porous structures. A two-step anodization process is used to anodize aluminium into size-controllable aluminium oxide. In this paper, we investigate how anodization parameters affect nano-porous structures, such as voltage and time of pretreatment, anodization voltage and time, pore widening time. The results showed pretreatment is important to obtain a smooth surface for anodizing. The pore size is controllable between 30 and 80 nm, with a linear fit curve. The interpore size is constant at around 95 nm, and the pore densities are between 1010 and 1011 cm–2. The formation of straight vertical walls is crucial if the PAA film is to be subsequently used as the template for the growth of metal nanowire arrays.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Zhu, L. Garcia-Gancedo, Q. Liu, A. Flewitt, W. Milne and F. Moussy, "Size-Tunable Porous Anodic Alumina Nano-Structure for Biosensing," Soft Nanoscience Letters, Vol. 1 No. 3, 2011, pp. 55-60. doi: 10.4236/snl.2011.13010.

References

[1] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structure of Anodic Alumina,” Science, Vol. 268, No. 5216, 1995, pp. 1466-1468. doi:10.1126/science.268.5216.1466
[2] Y. Z. Piao and H. Kim, “Fabrication of Nanostructured Materials Using Porous Alumina Template and Their Applications for Sensing and Electrocatalysis,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 4, 2009, pp. 2215-2233. doi:10.1166/jnn.2009.SE42
[3] G. P. Sklar, K. Paramguru, M. Misra and J. C. LaCombe, “Pulsed Electrodeposition into AAO Templates for CVD Growth of Carbon Nanotube Arrays,” Nanotechnology, Vol. 16, No. 8, 2005, pp. 1265-1271. doi:10.1166/jnn.2009.SE42
[4] B. S. Chen, Q. L. Xu, X. L. Zhao, X. G. Zhu, M. G. Kong and G. W. Meng, “Branched Silicon Nanotubes and Metal Nanowires via AAO-Template-Assistant Appro- ach,” Advanced Functional Materials, Vol. 20, No. 21, 2010, pp. 3791-3796. doi:10.1166/jnn.2009.SE42
[5] T. Yanagishita, K. Nishio and H. Masuda, “Fabrication of Metal Nanohole Arrays with High Aspect Ratios Using Two-Step Replication of Anodic Porous Alumina,” Advanced Materials, Vol. 17, No. 18, 2005, pp. 2241- 2243. doi:10.1166/jnn.2009.SE42
[6] F. M. Han, G. W. Meng, X. L. Zhao, Q. L. Xu, J. X. Liu, B. S. Chen, X. G. Zhu and M. G. Kong, “Building Desired Heterojunctions of Semiconductor CdS Nano- wire and Carbon Nanotube via AAO Template-Based Approach,” Materials Letters, Vol. 63, No. 26, 2009, pp. 2249-2252. doi:10.1016/j.matlet.2009.07.044
[7] A. Drury, S. Chaure, M. Kroell, V. Nicolosi, N. Chaure and W. J. Blau, “Fabrication and Characterization of Silver/Polyaniline Composite Nanowires in Porous Anodic Alumina,” Chemistry of Materials, Vol. 19, No. 17, 2007, pp. 4252-4258. doi:10.1021/cm071102s
[8] H. B. Shi and J. I. Yeh, “Part I: Recent Developments in Nanoelectrodes for Biological Measurements,” Nanome- dicine, Vol. 2, No. 5, 2007, pp. 587-598. doi:10.2217/17435889.2.5.587
[9] A. S. M. Chong, L. K. Tan, J. Deng and H. Gao, “Soft Imprinting: Creating Highly Ordered Porous Anodic Alumina Templates on Substrates for Nanofabrication,” Advanced Functional Materials, Vol. 17, No. 10, 2007, pp. 1629-1635. doi:10.1002/adfm.200600993
[10] A. J. Yin, J. Li, W. Jian, A. J. Bennett and J. M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition,” Applied Physics Letters, Vol. 79, No. 7, 2001, pp. 1039-1041. doi:10.1063/1.1389765
[11] Y. S. Lu, M. H. Yang, F. L. Qu, G. L. Shen and R. Q. Yu, “Amperometric Biosensors Based on Platinum Nano- wires,” Analytical Letters, Vol. 40, No. 5, 2007, pp. 875- 886. doi:10.1080/00032710701242071
[12] J. H. Yuan, K. Wang and X. H. Xia, “Highly Ordered Platinum-Nanotubule Arrays for Amperometric Glucose Sensing,” Advanced Functional Materials, Vol. 15, No. 5, 2005, pp. 803-809. doi:10.1002/adfm.200400321
[13] M. H. Yang, F. L. Qu, Y. S. Lu, Y. He, G. L. Shen and R. Q. Yu, “Platinum Nanowire Nanoelectrode Array for the Fabrication of Biosensors,” Biomaterials, Vol. 27, No. 35, 2006, pp. 5944-5950. doi:10.1016/j.biomaterials.2006.08.014
[14] M. S. Sander, A. L. Prieto, R. Gronsky, T. Sands and A. M. Stacy, “Fabrication of High-Density, High Aspect Ratio, Large-Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Temp- lates,” Advanced Materials, Vol. 14, No. 9, 2002, pp. 665-667. doi:10.1002/1521-4095(20020503)14:9<665::AID-ADMA665>3.0.CO;2-B
[15] A. P. Li, F. Muller, A. Birner, K. NielschandU. Gosele, “Hexagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” Journal of Applied Physics, Vol. 84, No. 11, 1998, pp. 6023-6026. doi:10.1063/1.368911

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.