Share This Article:

Influence of Chitosan Binder on the Adhesion of Silver Nanoparticles on Cotton Fabric and Evaluation of Antibacterial Activity

Full-Text HTML XML Download Download as PDF (Size:1040KB) PP. 98-106
DOI: 10.4236/anp.2015.44011    4,544 Downloads   5,021 Views  

ABSTRACT

Colloidal silver nanoparticles (AgNPs) with particle size less than 10 nm and concentration of 2 mM/L (~200 mg/L) were synthesized by gamma Co-60 ray irradiation of Ag+/chitosan solutions with different chitosan concentration of 0.5%, 1% and 2% (w/v). Incorporation of AgNPs onto cotton fabric was carried out by padding method with 100% wet pick-up. The content of AgNPs deposited on cotton fabric and released from cotton fabric after repeated washing was determined by inductively couple plasma-atomic emission spectroscopy (ICP-AES). The results indicated that cotton/AgNPs fabric made from padding into AgNPs solution with 0.5% - 1% chitosan was the best one of AgNPs adhesion ability on cotton fabric. Results on antibacterial activity against S. aureus showed that cotton/AgNPs fabric with AgNPs content more than 100 mg/kg exhibited highly antibacterial activity (η > 98%). The mechanical property (tensile strength and elongation) of cotton/AgNPs fabrics was almost unchanged in comparison with untreated cotton fabric. Thus, the resultant cotton/AgNPs fabric with highly antibacterial activity can be potentially used as bed drapes and/or patient uniforms in hospitals, etc.

Cite this paper

Hien, N. , Phu, D. , Duy, N. , Quoc, L. , Lan, N. , Quy, H. , Van, H. , Diem, P. and Hoa, T. (2015) Influence of Chitosan Binder on the Adhesion of Silver Nanoparticles on Cotton Fabric and Evaluation of Antibacterial Activity. Advances in Nanoparticles, 4, 98-106. doi: 10.4236/anp.2015.44011.

References

[1] Silver, S., Phung, L.T. and Silver, G. (2006) Silver as Biocides in Burn and Wound Dressings and Bacterial Resistance to Silver Compounds. Journal of Industrial Microbiology and Biotechnology, 33, 627-634.
http://www.ncbi.nlm.nih.gov/pubmed/16761169
[2] Tian, J., Wong, K.K.Y., Ho, C.M., Lok, C.N., Yu, W.Y., Che, C.M., Chiu, J.F. and Tam, P.K.H. (2007) Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem, 2, 129-136.
http://www.ncbi.nlm.nih.gov/pubmed/17075952
[3] Jain, J., Arora, S., Rajwade, J.M., Omray, P., Khandelwal, S. and Paknikar, K.M. (2009) Silver Nanoparticles in Therapeutics: Development of an Antimicrobial Gel Formulation for Topical Use. Molecular Pharmaceutics, 6, 1388-1401.
http://www.ncbi.nlm.nih.gov/pubmed/19473014
http://dx.doi.org/10.1021/mp900056g
[4] Lu, S., Gao, W. and Gu, H.Y. (2008) Construction, Application and Biosafety of Silver Nanocrystalline Chitosan Wound Dressing. Burn, 34, 623-628.
http://www.ncbi.nlm.nih.gov/pubmed/18226459
[5] Chaloupka, K., Malam, Y. and Seifalian, A. M. (2010) Nanosilver as a New Generation Nanoproduct in Biomedical Applications. Trends in Biotechnology, 28, 580-588.
http://www.ncbi.nlm.nih.gov/pubmed/20724010
http://dx.doi.org/10.1016/j.tibtech.2010.07.006
[6] Sobana, N., Muruganadham, M., Swaminathan, M. (2006) Nano-Ag Particles Doped TiO2 for Efficient Photo-degradation of Direct Azo Dyes. Journal of Molecular Catalysis A: Chemical, 258, 124-132.
http://www.sciencedirect.com/science/article/pii/S138111690600817X
http://dx.doi.org/10.1016/j.molcata.2006.05.013
[7] Oros-Ruiz, S., Zanella, R. and Prado, B. (2013) Photocatalytic Degradation of Frimethoprim by Metallic Nanoparticles Supported TiO2-P25. Journal of Hazardous Materials, 263, 28-35.
http://www.sciencedirect.com/science/article/pii/S0304389413002653
http://dx.doi.org/10.1016/j.jhazmat.2013.04.010
[8] Jain, P. and Pradeep, T. (2005) Potential of Silver Nanoparticles-Coated Polyurethane Foam as an Antibacterial Water Filter. Biotechnology and Bioengineering, 90, 59-63.
http://onlinelibrary.wiley.com/doi/10.1002/bit.20368
http://dx.doi.org/10.1002/bit.20368
[9] Nangmenyi, G., Yue, Z., Mehrabi, S., Mintz, E. and Economy, J. (2009) Synthesis and Characterization of Silver-Nanoparticle-Impregnated Fiberglass and Utility in Water Treatment. Nanotechnology, 20, Article ID: 495705.
http://www.ncbi.nlm.nih.gov/pubmed/19904023
http://dx.doi.org/10.1088/0957-4484/20/49/495705
[10] Ren, D. and Smith, J.A. (2013) Retention and Transport of Silver Nanoparticles in a Ceramic Porous Medium Used for Point-Of Use Water Treatment. Environmental Science and Technology, 47, 3825-3832.
http://www.ncbi.nlm.nih.gov/pubmed/23496137
http://dx.doi.org/10.1021/es4000752
[11] Nguyen, T.A.T., Dang, V.P., Nguyen, N.D., Le, A.Q., Nguyen, D.T. and Nguyen, Q.H. (2014) Bactericidal Activity and Silver Release of Porous Ceramic Candle Filter Prepared by Sintering Silica with Silver Nanoparticles/Zeolite for Water Disinfection. Advances in Natural Sciences: Nanoscience and Nanotechnololy, 5, Article ID: 035001.
http://www.academia.edu/11216805
http://dx.doi.org/10.1088/2043-6262/5/3/035001
[12] van Halem, D., van der Laan, H., Heijman, S.G.J., van Dijk, J.C. and Amy, G.L. (2009) Assessing the Sustainability of the Silver-Impregnated Ceramic Pot Filter for Low-Cost Household Drinking Water Treatment. Physics and Chemistry of the Earth, 34, 36-42.
http://www.sciencedirect.com/science/article/pii/S1474706508000120
http://dx.doi.org/10.1016/j.pce.2008.01.005
[13] Lee, H.J., Yeo, Y. and Jeong, S.H. (2003) Antibaterial Effect of Nanosized Silver Colloidal Solution on Textile Fabrics. Journal of Materials Science, 38, 2199-2204.
http://link.springer.com/article/10.1023%2FA%3A1023736416361
http://dx.doi.org/10.1023/A:1023736416361
[14] Lee, H.J. and Jeong, S.H. (2005) Bacteriostasis and Skin Innoxiousness of Nanosize Silver Colloids on Textile Fabrics. Textile Research Journal, 75, 551-556.
http://trj.sagepub.com/content/75/7/551
http://dx.doi.org/10.1177/0040517505053952
[15] Perkas, N., Amirian, G., Dubinsky, S., Gazit, S. and Gedanken, A. (2007) Ultrasound-Assisted Coating of Nylon 6,6 with Silver Nanoparticles and Its Antibacterial Activity. Journal of Applied Polymer Science, 104, 1423-1430.
http://onlinelibrary.wiley.com/doi/10.1002/app.24728
http://dx.doi.org/10.1002/app.24728
[16] Zhang, F., Wu, X., Chen, Y. and Lin, H. (2009) Application of Silver Nanoparticles to Cotton Fabric as an Antibacterial Textile Finish. Fibers and Polymers, 10, 496-501.
http://dx.doi.org/10.1007/s12221-009-0496-8
http://link.springer.com/article/10.1007%2Fs12221-009-0496-8
[17] El-Rafie, M.H., Ahmed, H.B. and Zahran, M.K. (2014) Characterization of Nanosilver Coated Cotton Fabric and Evaluation of Its Antibacterial Efficacy. Carbohydrate Polymers, 107, 174-181.
http://www.sciencedirect.com/science/article/pii/S0144861714001453
http://dx.doi.org/10.1016/j.carbpol.2014.02.024
[18] Hanh, T.T., Phu, D.V., Thu, N.T., Quoc, L.A., Duyen, D.N.B. and Hien, N.Q. (2014) Gamma Irradiation of Cotton Fabrics in AgNO3 Solution for Preparation of Antibacterial Fabrics. Carbohydrate Polymers, 101, 1243-1248.
http://www.ncbi.nlm.nih.gov/pubmed/24299897
http://dx.doi.org/10.1016/j.carbpol.2013.10.069
[19] Moritz, M. and Geszke-Moritz, M. (2013) The Newest Achievements in Synthesis, Immobilization and Practical Applications of Antibacterial Nanoparticles. Chemical Engineering Journal, 228, 596-613.
http://www.sciencedirect.com/science/article/pii/S1385894713006669
http://dx.doi.org/10.1016/j.cej.2013.05.046
[20] Wang, H., Wang, J., Hong, J., et al. (2007) Preparation and Characterization of Silver Nanocomposite Textile. Journal of Coatings Technology and Research, 4, 101-106.
http://link.springer.com/article/10.1007%2Fs11998-007-9001-8
http://dx.doi.org/10.1007/s11998-007-9001-8
[21] Rai, M., Yadav, A. and Gade, A. (2009) Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnology Advances, 27, 76-83.
http://www.sciencedirect.com/science/article/pii/S0734975008000918
http://dx.doi.org/10.1016/j.biotechadv.2008.09.002
[22] Lu, Z., Rong, K., Li, J., Yang, H. and Chen, R. (2013) Size-Dependent and Antibacterial Activities of Silver Nanoparticles against Oral Anaerobic Pathogenic Bacteria. Journal of Materials Science: Materials in Medicine, 24, 1465-1471.
http://www.ncbi.nlm.nih.gov/pubmed/23440430
http://dx.doi.org/10.1007/s10856-013-4894-5
[23] Martínez-Castañón, G.A., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J.R. and Ruiz, F. (2008) Synthesis and Antibacterial Activity of the Silver Nanoparticles with Different Sizes. Journal of Nanoparticle Research, 10, 1343-1348.
http://link.springer.com/article/10.1007%2Fs11051-008-9428-6
http://dx.doi.org/10.1007/s11051-008-9428-6
[24] Du, B.D., Phu, D.V., Duy, N.N., Lan, N.T.K., Lang, V.T.K., Thanh, N.V.K., Phong, N.T.P. and Hien, N.Q. (2008) Preparation of Colloidal Silver Nanoparticles in Poly(N-vinylpyrrolidone) by γ-Irradiation. Journal of Experimental Nanoscience, 3, 207-213.
http://www.tandfonline.com/doi/abs/10.1080/17458080802353527
http://dx.doi.org/10.1080/17458080802353527
[25] Huang, N.M., Radiman, S., Lim, H.N., Khiew, P.S., Chiu, W.S., Lee, K.H., Syahida, A., Hashim, R. and Chia, C.H. (2009) γ-Ray Assisted Synthesis of Silver Nanoparticles in Chitosan Solution and the Antibacterial Properties. Chemical Engineering Journal, 155, 499-507.
http://www.sciencedirect.com/science/article/pii/S1385894709005385
http://dx.doi.org/10.1016/j.cej.2009.07.040
[26] Xia, W., Liu, P., Zhang, J. and Chen, J. (2011) Biological Activities of Chitosan and Chito-Oligosaccharides. Food Hydrocolloids, 25, 170-179.
http://www.sciencedirect.com/science/article/pii/S0268005X10000469
http://dx.doi.org/10.1016/j.foodhyd.2010.03.003
[27] Phu, D.V., Lang, V.T.K., Lan, N.T.K., Duy, N.N., Chau, D.N., Du, B.D., Cam, B.D. and Hien, N.Q. (2010) Synthesis and Antimicrobial Effects of Colloidal Silver Nanoparticles in Chitosan by γ-Irradiation. Journal of Experimental Nanoscience, 5, 169-179.
http://dx.doi.org/10.1080/17458080903383324
[28] Potara, M., Jakab, E., Damert, A., Popescu, O., Canpean, V. and Astilean, S. (2011) Synergistic Antimicrobial Activity of Chitosan-Silver Nanoparticles on Staphylococcus aureus. Nanotechnology, 22, Article ID: 135101.
http://www.ncbi.nlm.nih.gov/pubmed/21343644
http://dx.doi.org/10.1088/0957-4484/22/13/135101
[29] Urreaga, J.M. and de la Orden, M.U. (2006) Chemical Interactions and Yellowing in Chitosan-Treated Cellulose. European Polymer Journal, 42, 2606-2616.
http://www.sciencedirect.com/science/article/pii/S0014305706001534
http://dx.doi.org/10.1016/j.eurpolymj.2006.05.002
[30] Remita, S., Fontaine, P., Rochas, C., Muller, F. and Goldman, M. (2005) Radiation Induced Synthesis of Silver Nanoshells Formed onto Organic Micelles. The European Physical Journal D, 34, 231-233.
http://link.springer.com/article/10.1140/epjd/e2005-00149-x
http://dx.doi.org/10.1140/epjd/e2005-00149-x
[31] Kvítek, L., Panácek, A., Soukupová, J., Kolár, M., Vecervá, R., Prucek, R., Holecová, M. and Zboril, R. (2008) Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). The Journal of Physical Chemistry C, 112, 5825-5834.
http://pubs.acs.org/doi/abs/10.1021/jp711616v
http://dx.doi.org/10.1021/jp711616v
[32] Du, B.D., Phu, D.V., Cam, B.D. and Hien, N.Q. (2007) Synthesis of Silver Nanoparticles by γ-Ray Irradiation Using PVA as Stabilizer. Vietnam Journal of Chemistry, 45, 136-140.
[33] Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M. and Siegrist, H. (2011) Behavior of Metallic Silver Nanoparticles in a Pilot Wastewater Treatment Plants. Environmental Science and Technology, 45, 3902-3908.
http://pubs.acs.org/doi/abs/10.1021/es1041892
http://dx.doi.org/10.1021/es1041892
[34] Ratte, H.T. (1999) Bioaccumulation and Toxicity of Silver Compounds: A Review. Environmental Toxicology and Chemistry, 18, 89-108.
http://onlinelibrary.wiley.com/doi/10.1002/etc.5620180112
http://dx.doi.org/10.1002/etc.5620180112

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.