Share This Article:

Parasitic Plants Striga and Phelipanche Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis

Full-Text HTML XML Download Download as PDF (Size:1557KB) PP. 1151-1166
DOI: 10.4236/ajps.2015.68120    3,798 Downloads   4,469 Views   Citations


Strigolactones are plant hormones with multiple functions, including regulating various aspects of plant architecture such as shoot branching, facilitating the colonization of plant roots by arbuscular mycorrhizal fungi, and acting as seed germination stimulants for certain parasitic plants of the family Orobanchaceae. The obligate parasitic species Phelipanche aegyptiaca and Striga hermonthica require strigolactones for germination, while the facultative parasite Triphysaria versicolor does not. It has been hypothesized that P. aegyptiaca and S. hermonthica would have undergone evolutionary loss of strigolactone biosynthesis as a part of their mechanism to enable specific detection of exogenous strigolactones. We analyzed the transcriptomes of P. aegyptiaca, S. hermonthica and T. versicolor and identified genes known to act in strigolactone synthesis (D27, CCD7, CCD8, and MAX1), perception (MAX2 and D14) and transport (PDR12). These genes were then analyzed to assess likelihood of function. Transcripts of all strigolactone-related genes were found in P. aegyptiaca and S. hermonthica, and evidence points to their encoding functional proteins. Gene open reading frames were consistent with homologs from Arabidopsis and other strigolactone-producing plants, and all genes were expressed in parasite tissues. In general, the genes related to strigolactone synthesis and perception appeared to be evolving under codon-based selective constraints in strigolactone-dependent species. Bioassays of S. hermonthica root extracts indicated the presence of strigolactone class stimulants on germination of P. aegyptiaca seeds. Taken together, these results indicate that Phelipanche aegyptiaca and S. hermonthica have retained functional genes involved in strigolactone biosynthesis, suggesting that the parasites use both endogenous and exogenous strigolactones and have mechanisms to differentiate the two.

Cite this paper

Das, M. , Fernández-Aparicio, M. , Yang, Z. , Huang, K. , Wickett, N. , Alford, S. , Wafula, E. , dePamphilis, C. , Bouwmeester, H. , Timko, M. , Yoder, J. and Westwood, J. (2015) Parasitic Plants Striga and Phelipanche Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis. American Journal of Plant Sciences, 6, 1151-1166. doi: 10.4236/ajps.2015.68120.


[1] Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. and Egley, G.H. (1966) Germination of Witchweed (Striga lutea Lour.): Isolation and Properties of a Potent Stimulant. Science, 154, 1189-1190.
[2] Cook, C.E., Whichard, L.P., Wall, M.E., Egley, G.H., Coggon, P., Luhan, P.A. and McPhail, A.T. (1972) Germination Stimulants. II. Structure of Strigol, a Potent Seed Germination Stimulant for Witchweed (Striga lutea). Journal of the American Chemical Society, 94, 6198-6199.
[3] Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H. and Bouwmeester, H.J. (2005) The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche Spp. Are Derived from the Carotenoid Pathway. Plant Physiology, 139, 920-934.
[4] Lopez-Raez, J.A., Charnikhova, T., Gomez-Roldan, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., Becard, G., Mulder, P. and Bouwmeester, H. (2008) Tomato Strigolactones Are Derived from Carotenoids and Their Biosynthesis Is Promoted by Phosphate Starvation. New Phytologist, 178, 863-874.
[5] Akiyama, K., Matsuzaki, K.-I. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature, 435, 824-827.
[6] Zheng, Z., Germain, A.D.S. and Chory, J. (2014) Unfolding the Mysteries of Strigolactone Signaling. Molecular Plant, 7, 934-936.
[7] Waldie, T., McCulloch, H. and Leyser, O. (2014) Strigolactones and the Control of Plant Development: Lessons from Shoot Branching. The Plant Journal, 79, 607-622.
[8] Seto, Y. and Yamaguchi, S. (2014) Strigolactone Biosynthesis and Perception. Current Opinion in Plant Biology, 21, 1-6.
[9] Koltai, H. (2014) Receptors, Repressors, PINs: A Playground for Strigolactone Signaling. Trends in Plant Science, 19, 727-733.
[10] Bennett, T. and Leyser, O. (2014) Strigolactone Signalling: Standing on the Shoulders of DWARFs. Current Opinion in Plant Biology, 22, 7-13.
[11] Bonfante, P. and Genre, A. (2008) Plants and Arbuscular Mycorrhizal Fungi: An Evolutionary-Developmental Perspective. Trends in Plant Science, 13, 492-498.
[12] Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogué, F. and Rameau, C. (2011) Strigolactones Regulate Protonema Branching and Act as a Quorum Sensing-Like Signal in the Moss Physcomitrella patens. Development, 138, 1531-1539.
[13] Delaux, P.-M., Xie, X., Timme, R.E., Puech-Pages, V., Dunand, C., Lecompte, E., Delwiche, C.F., Yoneyama, K., Bécard, G. and Séjalon-Delmas, N. (2012) Origin of Strigolactones in the Green Lineage. New Phytologist, 195, 857-871.
[14] Wang, C., Liu, Y., Li, S.-S. and Han, G.-Z. (2015) Insights into the Origin and Evolution of the Plant Hormone Signaling Machinery. Plant Physiology, 167, 872-886.
[15] Tsuchiya, Y. and McCourt, P. (2012) Strigolactones as Small Molecule Communicators. Molecular BioSystems, 8, 464-469.
[16] Xie, X., Yoneyama, K. and Yoneyama, K. (2010) The Strigolactone Story. Annual Review of Phytopathology, 48, 93-117.
[17] Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J. and Wang, Y. (2009) DWARF27, an Iron-Containing Protein Required for the Biosynthesis of Strigolactones, Regulates Rice Tiller Bud Outgrowth. The Plant Cell, 21, 1512-1525.
[18] Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P. and Al-Babili, S. (2012) The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone. Science, 335, 1348- 1351.
[19] Auldridge, M.E., Block, A., Vogel, J.T., Dabney-Smith, C., Mila, I., Bouzayen, M., Magallanes-Lundback, M., DellaPenna, D., McCarty, D.R. and Klee, H.J. (2006) Characterization of Three Members of the Arabidopsis Carotenoid Cleavage Dioxygenase Family Demonstrates the Divergent Roles of This Multifunctional Enzyme Family. The Plant Journal, 45, 982-993.
[20] Sorefan, K., Booker, J., Haurogné, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C. and Leyser, O. (2003) MAX4 and RMS1 Are Orthologous Dioxygenase-Like Genes That Regulate Shoot Branching in Arabidopsis and Pea. Genes & Development, 17, 1469-1474.
[21] Turnbull, C.G.N., Booker, J.P. and Leyser, H.M.O. (2002) Micrografting Techniques for Testing Long-Distance Signalling in Arabidopsis. The Plant Journal, 32, 255-262.
[22] Schwartz, S.H., Qin, X. and Loewen, M.C. (2004) The Biochemical Characterization of Two Carotenoid Cleavage Enzymes from Arabidopsis Indicates That a Carotenoid-Derived Compound Inhibits Lateral Branching. Journal of Biological Chemistry, 279, 46940-46945.
[23] Challis, R.J., Hepworth, J., Mouchel, C., Waites, R. and Leyser, O. (2013) A Role for More AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling Upstream of MAX2. Plant Physiology, 161, 1885-1902.
[24] Cardoso, C., Zhang, Y., Jamil, M., Hepworth, J., Charnikhova, T., Dimkpa, S.O.N., Meharg, C., Wright, M.H., Liu, J., Meng, X., Wang, Y., Li, J., McCouch, S.R., Leyser, O., Price, A.H., Bouwmeester, H.J. and Ruyter-Spira, C. (2014) Natural Variation of Rice Strigolactone Biosynthesis Is Associated with the Deletion of Two MAX1 Orthologs. Proceedings of the National Academy of Sciences of the United States of America, 111, 2379-2384.
[25] Hamiaux, C., Drummond, R.S.M., Janssen, B.J., Ledger, S.E., Cooney, J.M., Newcomb, R.D. and Snowden, K.C. (2012) DAD2 Is an α/β Hydrolase Likely to Be Involved in the Perception of the Plant Branching Hormone, Strigolactone. Current Biology, 22, 2032-2036.
[26] Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S. and Kyozuka, J. (2009) D14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant & Cell Physiology, 50, 1416-1424.
[27] Liu, W.Z., Wu, C., Fu, Y.P., Hu, G.C., Si, H.M., Zhu, L., Luan, W.J., He, Z.Q. and Sun, Z.X. (2009) Identification and Characterization of HTD2: A Novel Gene Negatively Regulating Tiller Bud Outgrowth in Rice. Planta, 230, 649-658.
[28] Chevalier, F., Nieminen, K., Sánchez-Ferrero, J.C., Rodríguez, M.L., Chagoyen, M., Hardtke, C.S. and Cubas, P. (2014) Strigolactone Promotes Degradation of DWARF14, an α/β Hydrolase Essential for Strigolactone Signaling in Arabidopsis. The Plant Cell, 26, 1134-1150.
[29] Somers, D.E. and Fujiwara, S. (2009) Thinking Outside the F-Box: Novel Ligands for Novel Receptors. Trends in Plant Science, 14, 206-213.
[30] Waters, M.T., Nelson, D.C., Scaffidi, A., Flematti, G.R., Sun, Y.K., Dixon, K.W. and Smith, S.M. (2012) Specialisation within the DWARF14 Protein Family Confers Distinct Responses to Karrikins and Strigolactones in Arabidopsis. Development, 139, 1285-1295.
[31] Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J.B., Reinhardt, D., Bours, R., Bouwmeester, H.J. and Martinoia, E. (2012) A Petunia ABC Protein Controls Strigolactone-Dependent Symbiotic Signalling and Branching. Nature, 483, 341-344.
[32] de Saint Germain, A., Bonhomme, S., Boyer, F.-D. and Rameau, C. (2013) Novel Insights into Strigolactone Distribution and Signalling. Current Opinion in Plant Biology, 16, 583-589.
[33] Liu, Q., Zhang, Y., Matusova, R., Charnikhova, T., Amini, M., Jamil, M., Fernandez-Aparicio, M., Huang, K., Timko, M.P., Westwood, J.H., Ruyter-Spira, C., van der Krol, S. and Bouwmeester, H.J. (2014) Striga hermonthica MAX2 Restores Branching but Not the Very Low Fluence Response in the Arabidopsis thaliana MAX2 Mutant. New Phytologist, 202, 531-541.
[34] Westwood, J.H., dePamphilis, C.W., Das, M., Fernandez-Aparicio, M., Honaas, L.A., Timko, M.P., Wafula, E.K., Wickett, N.J. and Yoder, J.I. (2012) The Parasitic Plant Genome Project: New Tools for Understanding the Biology of Orobanche and Striga. Weed Science, 60, 295-306.
[35] Westwood, J.H. (2000) Characterization of the Orobanche-Arabidopsis System for Studying Parasite-Host Interactions. Weed Science, 48, 742-748.[0742:COTOAS]2.0.CO;2
[36] Gurney, A.L., Grimanelli, D., Kanampiu, F., Hoisington, D., Scholes, J.D. and Press, M.C. (2003) Novel Sources of Resistance to Striga hermonthica in Tripsacum dactyloides, a Wild Relative of Maize. New Phytologist, 160, 557-568.
[37] Lynn, D.G. and Chang, M. (1990) Phenolic Signals in Cohabitation: Implications for Plant Development. Annual Review of Plant Physiology and Plant Molecular Biology, 41, 497-526.
[38] Gurney, A.L., Slate, J., Press, M.C. and Scholes, J.D. (2006) A Novel form of Resistance in Rice to the Angiosperm Parasite Striga hermonthica. New Phytologist, 169, 199-208.
[39] Young, N.D. and dePamphilis, C.W. (2005) Rate Variation in Parasitic Plants: Correlated and Uncorrelated Patterns among Plastid Genes of Different Function. BMC Evolutionary Biology, 5, 16.
[40] McNeal, J.R., Bennett, J.R., Wolfe, A.D. and Mathews, S. (2013) Phylogeny and Origins of Holoparasitism in Orobanchaceae. American Journal of Botany, 100, 971-983.
[41] Li, L., Stoeckert Jr., C.-J. and Roos, D.-S. (2003) Orthomcl: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research, 13, 2178-2189.
[42] Wall, P.K., Leebens-Mack, J., Müller, K.F., Field, D., Altman, N.S. and dePamphilis, C.W. (2008) PlantTribes: A Gene and Gene Family Resource for Comparative Genomics in Plants. Nucleic Acids Research, 36, D970-D976.
[43] McGinnis, S. and Madden, T.L. (2004) BLAST: At the Core of a Powerful and Diverse Set of Sequence Analysis Tools. Nucleic Acids Research, 32, W20-W25.
[44] Eddy, S.R. (2011) Accelerated Profile HMM Searches. PLoS Computational Biology, 7, e1002195.
[45] Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780.
[46] Capella-Gutiérrez, S., Silla-Martínez, J.M. and Gabaldón, T. (2009) trimAL: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics, 25, 1972-1973.
[47] Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics, 22, 2688-2690.
[48] Yang, Z. (1997) PAML: A Program Package for Phylogenetic Analysis by Maximum Likelihood. Computer Applications in the Biosciences, 13, 555-556.
[49] Yang, Z. (2007) PAML4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evololution, 24, 1586-1591.
[50] González-Verdejo, C.I., Die, J.V., Nadal, S., Jiménez-Marín, A., Moreno, M.T. and Román, B. (2008) Selection of Housekeeping Genes for Normalization by Real-Time RT-PCR: Analysis of Or-MYB1 Gene Expression in Orobanche ramosa Development. Analytical Biochemistry, 379, 176-181.
[51] Fernández-Aparicio, M., Rubiales, D., Bandaranayake, P., Yoder, J. and Westwood, J. (2011) Transformation and Regeneration of the Holoparasitic Plant Phelipanche aegyptiaca. Plant Methods, 7, 36.
[52] Fernández-Aparicio, M., Huang, K., Wafula, E.K., Honaas, L.A., Wickett, N.J., Timko, M.P., dePamphilis, C.W., Yoder, J.I. and Westwood, J.H. (2013) Application of qRT-PCR and RNA-Seq Analysis for the Identification of Housekeeping Genes Useful for Normalization of Gene Expression Values During Striga hermonthica Development. Molecular Biology Reports, 40, 3395-3407.
[53] Westwood, J.H. and Foy, C.L. (1999) Influence of Nitrogen on Germination and Early Development of Broomrape (Orobanche Spp.). Weed Science, 47, 2-7.
[54] Péron, T., Véronési, C., Mortreau, E., Pouvreau, J.-B., Thoiron, S., Leduc, N., Delavault, P. and Simier, P. (2012) Role of the Sucrose Synthase Encoding PrSus1 Gene in the Development of the Parasitic Plant Phelipanche ramosa L. (Pomel). Molecular Plant-Microbe Interactions, 25, 402-411.
[55] Nei, M. (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.
[56] Messing, S.A.J., Gabelli, S.B., Echeverria, I., Vogel, J.T., Guan, J.C., Tan, B.C., Klee, H.J., McCarty, D.R. and Amzel, L.M. (2010) Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. The Plant Cell, 22, 2970-2980.
[57] van den Brule, S. and Smart, C.C. (2002) The Plant PDR Family of ABC Transporters. Planta, 216, 95-106.
[58] Dun, E.A., Brewer, P.B. and Beveridge, C.A. (2009) Strigolactones: Discovery of the Elusive Shoot Branching Hormone. Trends in Plant Science, 14, 364-372.
[59] Johnson, X., Brcich, T., Dun, E.A., Goussot, M., Haurogné, K., Beveridge, C.A. and Rameau, C. (2006) Branching Genes Are Conserved across Species. Genes Controlling a Novel Signal in Pea Are Coregulated by Other Long-Distance Signals. Plant Physiology, 142, 1014-1026.
[60] Dun, E.A., de Saint Germain, A., Rameau, C. and Beveridge, C.A. (2013) Dynamics of Strigolactone Function and Shoot Branching Responses in Pisum sativum. Molecular Plant, 6, 128-140.
[61] Evidente, A., Fernandez-Aparicio, M., Cimmino, A., Rubiales, D., Andolfi, A. and Motta, A. (2009) Peagol and Peagoldione, Two New Strigolactone-Like Metabolites Isolated from Pea Root Exudates. Tetrahedron Letters, 50, 6955-6958.
[62] Evidente, A., Cimmino, A., Fernández-Aparicio, M., Rubiales, D., Andolfi, A. and Melck, D. (2011) Soyasapogenol B and Trans-22-Dehydrocam-Pesterol from Common Vetch (Vicia sativa L.) Root Exudates Stimulate Broomrape Seed Germination. Pest Management Science, 67, 1015-1022.
[63] Evidente, A., Cimmino, A., Fernandez-Aparicio, M., Andolfi, A., Rubiales, D. and Motta, A. (2010) Polyphenols, Including the New Peapolyphenols A-C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. Journal of Agricultural and Food Chemistry, 58, 2902-2907.
[64] Yoneyama, K., Yoneyama, K., Takeuchi, Y. and Sekimoto, H. (2007) Phosphorus Deficiency in Red Clover Promotes Exudation of Orobanchol, the Signal for Mycorrhizal Symbionts and Germination Stimulant for Root Parasites. Planta, 225, 1031-1038.
[65] Harrison, M.J. (2005) Signaling in the Arbuscular Mycorrhizal Symbiosis. Annual Review of Microbiology, 59, 19-42.
[66] Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pages, V., Dun, E.A., Pillot, J.-P., Letisse, F., Matusova, R., Danoun, S., Portais, J.-C., Bouwmeester, H., Becard, G., Beveridge, C.A., Rameau, C. and Rochange, S.F. (2008) Strigolactone Inhibition of Shoot Branching. Nature, 455, 189-194.
[67] Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J. and Yamaguchi, S. (2008) Inhibition of Shoot Branching by New Terpenoid Plant Hormones. Nature, 455, 195-200.
[68] Leyser, O. (2009) The Control of Shoot Branching: An Example of Plant Information Processing. Plant, Cell & Environment, 32, 694-703.
[69] Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H. and Ruyter-Spira, C. (2011) Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis. Plant Physiology, 155, 974-987.
[70] Irving, L.J. and Cameron, D.D. (2009) Chapter 3 You Are What You Eat: Interactions between Root Parasitic Plants and Their Hosts. Advances in Botanical Research, 50, 87-138.
[71] dePamphilis, C. and Palmer, J. (1990) Loss of Photosynthetic and Chlororespiratory Genes from the Plastid Genome of a Parasitic Flowering Plant. Nature, 348, 337-339.
[72] Wickett, N.J., Honaas, L.A., Wafula, E.K., Das, M., Huang, K., Wu, B., Landherr, L., Timko, M.P., Yoder, J., Westwood, J.H. and dePamphilis, C.W. (2011) Transcriptomes of the Parasitic Plant Family Orobanchaceae Reveal Surprising Conservation of Chlorophyll Synthesis. Current Biology, 21, 2098-2104.
[73] Plakhine, D., Tadmor, Y., Ziadne, H. and Joel, D.M. (2012) Maternal Tissue Is Involved in Stimulant Reception by Seeds of the Parasitic Plant Orobanche. Annals of Botany, 109, 979-986.
[74] Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Hayashi, H. and Yoneyama, K. (2008) Strigolactones, Host Recognition Signals for Root Parasitic Plants and Arbuscular Mycorrhizal Fungi, from Fabaceae Plants. New Phytologist, 179, 484-494.
[75] Yoneyama, K., Ruyter-Spira, C. and Bouwmeester, H. (2013) Induction of Germination. In: Joel, D.M., Gressel, J. and Musselman, L.J., Ed., Parasitic Orobanchaceae, Springer, Berlin Heidelberg, 167-194.
[76] Fernandez-Aparicio, M., Flores, F. and Rubiales, D. (2009) Recognition of Root Exudates by Seeds of Broomrape (Orobanche and Phelipanche) Species. Annals of Botany, 103, 423-431.
[77] Fernández-Aparicio, M., Pérez-de-Luque, A., Prats, E. and Rubiales, D. (2008) Variability of Interactions between Barrel Medic (Medicago truncatula) Genotypes and Orobanche Species. Annals of Applied Biology, 153, 117-126.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.