Share This Article:

Periodic Bifurcations in Descendant Trees of Finite p-Groups

Full-Text HTML XML Download Download as PDF (Size:4420KB) PP. 162-195
DOI: 10.4236/apm.2015.54020    2,270 Downloads   2,541 Views   Citations
Author(s)    Leave a comment


Theoretical background and an implementation of the p-group generation algorithm by Newman and O’Brien are used to provide computational evidence of a new type of periodically repeating patterns in pruned descendant trees of finite p-groups.

Cite this paper

Mayer, D. (2015) Periodic Bifurcations in Descendant Trees of Finite p-Groups. Advances in Pure Mathematics, 5, 162-195. doi: 10.4236/apm.2015.54020.


[1] du Sautoy, M. (2001) Counting p-Groups and Nilpotent Groups. Publications Mathématiques de l’Institut des Hautes études Scientifiques, 92, 63-112.
[2] Eick, B. and Leedham-Green, C. (2008) On the Classification of Prime-Power Groups by Coclass. Bulletin of the London Mathematical Society, 40, 274-288.
[3] Artin, E. (1929) Idealklassen in Oberkorpern und allgemeines Reziprozitatsgesetz. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 7, 46-51.
[4] Mayer, D.C. (2012) Transfers of Metabelian p-Groups. Monatshefte für Mathematik, 166, 467-495.
[5] Mayer, D.C. (2014) Principalization Algorithm via Class Group Structure. Journal de Théorie des Nombres de Bordeaux, 26, 415-464.
[6] Mayer, D.C. (2013) The Distribution of Second p-Class Groups on Coclass Graphs. Journal de Théorie des Nombres de Bordeaux, 25, 401-456.
[7] Bush, M.R. and Mayer, D.C. (2015) 3-Class Field Towers of Exact Length 3. Journal of Number Theory, 147, 766-777.
[8] Newman, M.F. (1977) Determination of Groups of Prime-Power Order. In: Bryce, R.A., Cossey, J., Newman, M.F., Eds., Group Theory, Springer, Berlin, 73-84.
[9] O’Brien, E.A. (1990) The p-Group Generation Algorithm. Journal of Symbolic Computation, 9, 677-698.
[10] Holt, D.F., Eick, B. and O’Brien, E.A. (2005) Handbook of Computational Group Theory, Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press, Boca Raton.
[11] Gamble, G., Nickel, W. and O’Brien, E.A. (2006) ANU p-Quotient—p-Quotient and p-Group Generation Algorithms. An Accepted GAP 4 Package, Available also in MAGMA.
[12] The GAP Group (2014) GAP—Groups, Algorithms, and Programming—A System for Computational Discrete Algebra. Version 4.7.5, Aachen, Braunschweig, Fort Collins, St. Andrews.
[13] The MAGMA Group (2014) MAGMA Computational Algebra System. Version 2.21-1, Sydney.
[14] Ascione, J.A., Havas, G. and Leedham-Green, C.R. (1977) A Computer Aided Classification of Certain Groups of Prime Power Order. Bulletin of the Australian Mathematical Society, 17, 257-274.
[15] Nebelung, B. (1989) Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3,3) und Anwendung auf das Kapitulationsproblem. Inaugural Dissertation, Universitat zu Koln, Koln.
[16] Besche, H.U., Eick, B. and O’Brien, E.A. (2002) A Millennium Project: Constructing Small Groups. International Journal of Algebra and Computation, 12, 623-644.
[17] Besche, H.U., Eick, B. and O’Brien, E.A. (2005) The Small Groups Library—A Library of Groups of Small Order. An Accepted and Refereed GAP 4 Package, Available also in MAGMA.
[18] Ascione, J.A. (1979) On 3-Groups of Second Maximal Class. Ph.D. Thesis, Australian National University, Canberra.
[19] Ascione, J.A. (1980) On 3-Groups of Second Maximal Class. Bulletin of the Australian Mathematical Society, 21, 473-474.
[20] Newman, M.F. (1990) Groups of Prime-Power Order. Lecture Notes in Mathematics, 1456, 49-62.
[21] Leedham-Green, C.R. and Newman, M.F. (1980) Space Groups and Groups of Prime Power Order I. Archiv der Mathematik, 35, 193-203.
[22] du Sautoy, M. and Segal, D. (2000) Zeta Functions of Groups. In: du Sautoy, M., Segal, D. and Shalev, A., Eds., New Horizons in Pro-p Groups, Progress in Mathematics, Birkhauser, Basel, 249-286.
[23] Leedham-Green, C.R. and McKay, S. (2002) The Structure of Groups of Prime Power Order, London Mathematical Society Monographs. New Series 27, Oxford University Press, Oxford.
[24] Eick, B., Leedham-Green, C.R., Newman, M.F. and O’Brien, E.A. (2013) On the Classification of Groups of Prime-Power Order by Coclass: The 3-Groups of Coclass 2. International Journal of Algebra and Computation, 23, 1243-1288.
[25] Newman, M.F. and O’Brien, E.A. (1999) Classifying 2-Groups by Coclass. Transactions of the American Mathematical Society, 351, 131-169.
[26] Dietrich, H., Eick, B. and Feichtenschlager, D. (2008) Investigating p-Groups by Coclass with GAP. In: Kappe, L.-C., Magidin, A. and Morse, R.F., Eds., Computational Group Theory and the Theory of Groups, AMS, Providence, 45-61.
[27] Shalev, A. (1994) The Structure of Finite p-Groups: Effective Proof of the Coclass Conjectures. Inventiones Mathematicae, 115, 315-345.
[28] Leedham-Green, C.R. (1994) The Structure of Finite p-Groups. Journal London Mathematical Society, 50, 49-67.
[29] Hall, M. and Senior, J.K. (1964) The Groups of Order 2n (n ≤ 6). Macmillan, New York.
[30] Hall, P. (1940) The Classification of Prime-Power Groups. Journal für Die Reine und Angewandte Mathematik, 182, 130-141.
[31] Blackburn, N. (1958) On a Special Class of p-Groups. Acta Mathematica, 100, 45-92.
[32] Taussky, O. (1937) A Remark on the Class Field Tower. Journal London Mathematical Society, 12, 82-85.
[33] Bagnera, G. (1898) La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo. Annali di Matematica Pura ed Applicata, 1, 137-228.
[34] Arrigoni, M. (1998) On Schur σ-Groups. Mathematische Nachrichten, 192, 71-89.
[35] Boston, N., Bush, M.R. and Hajir, F. (2015) Heuristics for p-Class Towers of Imaginary Quadratic Fields. Mathematische Annalen, in Press.
[36] Koch, H. and Venkov, B.B. (1975) über den p-Klassenkorperturm eines imaginar-quadratischen Zahlkorpers. Astérisque, 24-25, 57-67.
[37] Benjamin, E., Lemmermeyer, F. and Snyder, C. (2003) Imaginary Quadratic Fields with Cl2(k)(2,2,2). Journal of Number Theory, 103, 38-70.
[38] Shafarevich, I.R. (1964) Extensions with Prescribed Ramification Points (Russian). Publications Mathématiques de l’IHéS, 18, 71-95.
[39] Boston, N. and Nover, H. (2006) Computing Pro-p Galois Groups. Algorithmic Number Theory: Lecture Notes in Computer Science, 4076, 1-10.
[40] Mayer, D.C. (2012) The Second p-Class Group of a Number Field. International Journal of Number Theory, 8, 471-505.
[41] Nover, H. (2009) Computation of Galois Groups of 2-Class Towers. Ph.D. Thesis, University of Wisconsin, Madison.
[42] Azizi, A., Zekhnini, A. and Taous, M. (2015) Coclass of for Some Fields with 2-Class Groups of Type (2,2,2). Journal of Algebra and Its Applications, in Press.
[43] Bosma, W., Cannon, J. and Playoust, C. (1997) The Magma Algebra System. I. The User Language. Journal of Symbolic Computation, 24, 235-265.
[44] Bosma, W., Cannon, J.J., Fieker, C. and Steels, A., Eds. (2014) Handbook of Magma Functions. Edition 2.21, University of Sydney, Sydney.
[45] Mayer, D.C. and Newman, M.F. (2013) Finite 3-Groups as Viewed from Class Field Theory, Groups St. Andrews 2013. University of St. Andrews, Fife, Scotland.
[46] Mayer, D.C., Bush, M.R. and Newman, M.F. (2013) 3-Class Field Towers of Exact Length 3. 18th OMG Congress and 123rd Annual DMV Meeting 2013, University of Innsbruck, Tyrol, Austria.
[47] Mayer, D.C., Bush, M.R. and Newman, M.F. (2013) Class Towers and Capitulation over Quadratic Fields. West Coast Number Theory 2013, Asilomar Conference Center, Pacific Grove.
[48] Scholz, A. and Taussky, O. (1934) Die Hauptideale der kubischen Klassenkorper imaginar quadratischer Zahlkorper: Ihre rechnerische Bestimmung und ihr Einflu auf den Klassenkorperturm. Journal Für Die Reine und Angewandte Mathematik, 171, 19-41.
[49] Heider, F.-P. and Schmithals, B. (1982) Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. Journal Für Die Reine und Angewandte Mathematik, 336, 1-25.
[50] Mayer, D.C. (1991) Principalization in Complex S3-Fields. Congressus Numerantium, 80, 73-87.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.