Share This Article:

Gene Regulation through mRNA Expression

Full-Text HTML XML Download Download as PDF (Size:870KB) PP. 45-57
DOI: 10.4236/abc.2015.52005    2,645 Downloads   3,010 Views  


In eukaryotes, gene expression is achieved by four steps: transcription, processing, nuclear export, and translation. Each step requires multiple factors, and frequently two or more pathways are used by a single gene, enabling strictly regulated gene expression. Importantly, eukaryotes, taking advantage of the separated structures of the nucleus and the cytoplasm, have evolved complex and organized mRNA processing mechanisms that permit sophisticated biological activity. The processes are much more complicated than those found in prokaryotes, in which transcription and translation occur linearly in time and place. Here, we review gene expression, focusing on mRNA processing in the nucleus and the gene regulatory systems found at each step. Combination of gene regulation shows the typical phenotype in each cell. Further understanding of the uncertain mechanisms will uncover the gene regulation through mRNA expression.

Cite this paper

Inose, H. , Mukai, K. , Ito, M. and Masuda, S. (2015) Gene Regulation through mRNA Expression. Advances in Biological Chemistry, 5, 45-57. doi: 10.4236/abc.2015.52005.


[1] Hirose, Y. and Manley, J.L. (2000) RNA Polymerase II and the Integration of Nuclear Events. Genes & Development, 14, 1415-1429.
[2] Staley, J.P. and Guthrie, C. (1998) Mechanical Devices of the Spliceosome: Motors, Clocks, Springs, and Things. Cell, 92, 315-326.
[3] Matera, A.G. and Wang, Z. (2014) A Day in the Life of the Spliceosome. Nature Reviews Molecular Cell Biology, 15, 108-121.
[4] Colgan, D.F. and Manley, J.L. (1997) Mechanism and Regulation of mRNA Polyadenylation. Genes & Development, 11, 2755-2766.
[5] Mangus, D.A., Evans, M.C. and Jacobson, A. (2003) Poly(A)-Binding Proteins: Multifunctional Scaffolds for the Post-Transcriptional Control of Gene Expression. Genome Biology, 4, 223.
[6] Culjkovic-Kraljacic, B. and Borden, K.L. (2013) Aiding and Abetting Cancer: mRNA Export and the Nuclear Pore. Trends in Cell Biology, 23, 328-335.
[7] Natalizio, B.J. and Wente, S.R. (2013) Postage for the Messenger: Designating Routes for Nuclear mRNA Export. Trends in Cell Biology, 23, 365-373.
[8] Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A.G., Aguilera, A., Struhl, K., Reed, R. and Hurt, E. (2002) TREX Is a Conserved Complex Coupling Transcription with Messenger RNA Export. Nature, 417, 304-308.
[9] Gwizdek, C., Iglesias, N., Rodriguez, M.S., Ossareh-Nazari, B., Hobeika, M., Divita, G., Stutz, F. and Dargemont, C. (2006) Ubiquitin-Associated Domain of Mex67 Synchronizes Recruitment of the mRNA Export Machinery with Transcription. Proceedings of the National Academy of Sciences of the United States of America, 103, 16376-16381.
[10] Zhou, Z., Luo, M.J., Straesser, K., Katahira, J., Hurt, E. and Reed, R. (2000) The Protein Aly Links Pre-Messenger-RNA Splicing to Nuclear Export in Metazoans. Nature, 407, 401-405.
[11] Zhou, Z., Licklider, L.J., Gygi, S.P. and Reed, R. (2002) Comprehensive Proteomic Analysis of the Human Spliceosome. Nature, 419, 182-185.
[12] Masuda, S., Das, R., Cheng, H., Hurt, E., Dorman, N. and Reed, R. (2005) Recruitment of the Human TREX Complex to mRNA during Splicing. Genes & Development, 19, 1512-1517.
[13] Yamazaki, T., Fujiwara, N., Yukinaga, H., Ebisuya, M., Shiki, T., Kurihara, T., Kioka, N., Kambe, T., Nagao, M., Nishida, E. and Masuda, S. (2010) The Closely Related RNA Helicases, UAP56 and URH49, Preferentially form Distinct mRNA Export Machineries and Coordinately Regulate Mitotic Progression. Molecular Biology of the Cell, 21, 2953- 2965.
[14] Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y. and Chait, B.T. (2000) The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism. Journal of Cell Biology, 148, 635-651.
[15] Fribourg, S., Braun, I.C., Izaurralde, E. and Conti, E. (2001) Structural Basis for the Recognition of a Nucleoporin FG Repeat by the NTF2-Like Domain of the TAP/p15 mRNA Nuclear Export Factor. Molecular Cell, 8, 645-656.
[16] Ribbeck, K. and Gorlich, D. (2001) Kinetic Analysis of Translocation through Nuclear Pore Complexes. The EMBO Journal, 20, 1320-1330.
[17] Grant, R.P., Hurt, E., Neuhaus, D. and Stewart, M. (2002) Structure of the C-Terminal FG-Nucleoporin Binding Domain of Tap/NXF1. Nature Structural Biology, 9, 247-251.
[18] Alcazar-Roman, A.R., Tran, E.J., Guo, S. and Wente, S.R. (2006) Inositol Hex-akisphosphate and Gle1 Activate the DEAD-Box Protein Dbp5 for Nuclear mRNA Export. Nature Cell Biology, 8, 711-716.
[19] Weirich, C.S., Erzberger, J.P., Flick, J.S., Berger, J.M., Thorner, J. and Weis, K. (2006) Activation of the DExD/ H-Box Protein Dbp5 by the Nuclear-Pore Protein Gle1 and Its Coactivator InsP6 Is Required for mRNA Export. Nature Cell Biology, 8, 668-676.
[20] Tran, E.J., Zhou, Y., Corbett, A.H. and Wente, S.R. (2007) The DEAD-Box Protein Dbp5 Controls mRNA Export by Triggering Specific RNA:Protein Remodeling Events. Molecular Cell, 28, 850-859.
[21] Hutten, S. and Kehlenbach, R.H. (2007) CRM1-Mediated Nuclear Export: To the Pore and Beyond. Trends in Cell Biology, 17, 193-201.
[22] Fornerod, M., Ohno, M., Yoshida, M. and Mattaj, I.W. (1997) CRM1 Is an Export Receptor for Leucine-Rich Nuclear Export Signals. Cell, 90, 1051-1060.
[23] Kehlenbach, R.H., Dickmanns, A., Kehlenbach, A., Guan, T. and Gerace, L. (1999) A Role for RanBP1 in the Release of CRM1 from the Nuclear Pore Complex in a Terminal Step of Nuclear Export. Journal of Cell Biology, 145, 645-657.
[24] Bischoff, F.R. and Ponstingl, H. (1991) Catalysis of Guanine Nucleotide Exchange on Ran by the Mitotic Regulator RCC1. Nature, 354, 80-82.
[25] Schwer, B., Saha, N., Mao, X., Chen, H.W. and Shuman, S. (2000) Structure-Function Analysis of Yeast mRNA Cap Methyltransferase and High-Copy Suppression of Conditional Mutants by AdoMet Synthase and the Ubiquitin Conjugating Enzyme Cdc34p. Genetics, 155, 1561-1576.
[26] Chiang, P.K., Gordon, R.K., Tal, J., Zeng, G.C., Doctor, B.P., Pardhasaradhi, K. and McCann, P.P. (1996) S-Adeno-sylmethionine and Methylation. The FASEB Journal, 10, 471-480.
[27] Gorlich, D., Kraft, R., Kostka, S., Vogel, F., Hartmann, E., Laskey, R.A., Mattaj, I.W. and Izaurralde, E. (1996) Importin Provides a Link between Nuclear Protein Import and U snRNA Export. Cell, 87, 21-32.
[28] Wen, Y. and Shatkin, A.J. (2000) Cap Methyltransferase Selective Binding and Methylation of GpppG-RNA Are Stimulated by Importin-α. Genes & Development, 14, 2944-2949.
[29] Dias, S.M., Wilson, K.F., Rojas, K.S., Ambrosio, A.L. and Cerione, R.A. (2009) The Molecular Basis for the Regulation of the Cap-Binding Complex by the Importins. Nature Structural & Molecular Biology, 16, 930-937.
[30] Furuichi, Y., Morgan, M., Shatkin, A.J., Jelinek, W., Salditt-Georgieff, M. and Darnell, J.E. (1975) Methylated, Blocked 5 Termini in HeLa Cell mRNA. Proceedings of the National Academy of Sciences of the United States of America, 72, 1904-1908.
[31] Zamudio, J.R., Mittra, B., Campbell, D.A. and Sturm, N.R. (2009) Hypermethylated Cap 4 Maximizes Trypanosoma Brucei Translation. Molecular Microbiology, 72, 1100-1110.
[32] Belanger, F., Stepinski, J., Darzynkiewicz, E. and Pelletier, J. (2010) Characterization of hMTr1, a Human Cap1 2’-O-Ribose Methyltransferase. The Journal of Biological Chemistry, 285, 33037-33044.
[33] Werner, M., Purta, E., Kaminska, K.H., Cymerman, I.A., Campbell, D.A., Mittra, B., Zamudio, J.R., Sturm, N.R., Jaworski, J. and Bujnicki, J.M. (2011) 2’-O-Ribose Methylation of Cap2 in Human: Function and Evolution in a Horizontally Mobile Family. Nucleic Acids Research, 39, 4756-4768.
[34] Smietanski, M., Werner, M., Purta, E., Kaminska, K.H., Stepinski, J., Darzynkiewicz, E., Nowotny, M. and Bujnicki, J.M. (2014) Structural Analysis of Human 2’-O-Ribose Methyltransferases Involved in mRNA Cap Structure Formation. Nature Communications, 5, Article Number: 3004.
[35] Van Dijk, E., Cougot, N., Meyer, S., Babajko, S., Wahle, E. and Seraphin, B. (2002) Human Dcp2: A Catalytically Active mRNA Decapping En-zyme Located in Specific Cytoplasmic Structures. The EMBO Journal, 21, 6915-6924.
[36] Piccirillo, C., Khanna, R. and Kiledjian, M. (2003) Functional Characterization of the Mammalian mRNA Decapping Enzyme hDcp2. RNA, 9, 1138-1147.
[37] Jiao, X., Xiang, S., Oh, C., Martin, C.E., Tong, L. and Kiledjian, M. (2010) Identification of a Quality-Control Mechanism for mRNA 5’-End Capping. Nature, 467, 608-611.
[38] Cartegni, L., Chew, S.L. and Krainer, A.R. (2002) Listening to Silence and Understanding Nonsense: Exonic Mutations that Affect Splicing. Nature Reviews Genetics, 3, 285-298.
[39] Fu, X.D. and Ares Jr., M. (2014) Context-Dependent Control of Alternative Splicing by RNA-Binding Proteins. Nature Reviews Genetics, 15, 689-701.
[40] Wang, Z. and Burge, C.B. (2008) Splicing Regulation: From a Parts List of Regulatory Elements to an Integrated Splicing Code. RNA, 14, 802-813.
[41] Warf, M.B. and Berglund, J.A. (2010) Role of RNA Structure in Regulating Pre-mRNA Splicing. Trends in Biochemical Sciences, 35, 169-178.
[42] Wang, Y., Xiao, X., Zhang, J., Choudhury, R., Robertson, A., Li, K., Ma, M., Burge, C.B. and Wang, Z. (2013) A Complex Network of Factors with Overlapping Affinities Represses Splicing through Intronic Elements. Nature Structural & Molecular Biology, 20, 36-45.
[43] Erkelenz, S., Mueller, W.F., Evans, M.S., Busch, A., Schoneweis, K., Hertel, K.J. and Schaal, H. (2013) Position-Dependent Splicing Activation and Repression by SR and hnRNP Proteins Rely on Common Mechanisms. RNA, 19, 96- 102.
[44] Wang, Y., Ma, M., Xiao, X. and Wang, Z. (2012) Intronic Splicing Enhancers, Cognate Splicing Factors and Context-Dependent Regulation Rules. Nature Structural & Molecular Biology, 19, 1044-1052.
[45] Ghigna, C., Giordano, S., Shen, H., Benvenuto, F., Castiglioni, F., Comoglio, P.M., Green, M.R., Riva, S. and Biamonti, G. (2005) Cell Motility Is Controlled by SF2/ASF through Alternative Splicing of the Ron Protooncogene. Molecular Cell, 20, 881-890.
[46] Anczukow, O., Rosenberg, A.Z., Akerman, M., Das, S., Zhan, L., Karni, R., Muthuswamy, S.K. and Krainer, A.R. (2012) The Splicing Factor SRSF1 Regulates Apoptosis and Proliferation to Promote Mammary Epithelial Cell Transformation. Nature Structural & Molecular Biology, 19, 220-228.
[47] O’Connor, L., Strasser, A., O'Reilly, L.A., Hausmann, G., Adams, J.M., Cory, S. and Huang, D.C. (1998) Bim: A Novel Member of the Bcl-2 Family That Promotes Apoptosis. The EMBO Journal, 17, 384-395.
[48] Hui, J., Stangl, K., Lane, W.S. and Bindereif, A. (2003) HnRNP L Stimulates Splicing of the eNOS Gene by Binding to Variable-Length CA Repeats. Nature Structural & Molecular Biology, 10, 33-37.
[49] Heiner, M., Hui, J., Schreiner, S., Hung, L.H. and Bindereif, A. (2010) HnRNP L-Mediated Regulation of Mammalian Alternative Splicing by Interference with Splice Site Recognition. RNA Biology, 7, 56-64.
[50] Hung, L.H., Heiner, M., Hui, J., Schreiner, S., Benes, V. and Bindereif, A. (2008) Diverse Roles of hnRNP L in Mammalian mRNA Processing: A Combined Microarray and RNAi Analysis. RNA, 14, 284-296.
[51] Rossbach, O., Hung, L.H., Khrameeva, E., Schreiner, S., Konig, J., Curk, T., Zupan, B., Ule, J., Gelfand, M.S. and Bindereif, A. (2014) Crosslinking-Immunoprecipitation (iCLIP) Analysis Reveals Global Regulatory Roles of hnRNP L. RNA Biology, 11, 146-155.
[52] Cao, W., Razanau, A., Feng, D., Lobo, V.G. and Xie, J. (2012) Control of Alternative Splicing by Forskolin through hnRNP K during Neuronal Differentiation. Nucleic Acids Research, 40, 8059-8071.
[53] Kornblihtt, A.R., Schor, I.E., Allo, M., Dujardin, G., Petrillo, E. and Munoz, M.J. (2013) Alternative splicing: A Pivotal Step between Eukaryotic Transcription and Translation. Nature Reviews Molecular Cell Biology, 14, 153-165.
[54] Caceres, J.F. and Kornblihtt, A.R. (2002) Alternative Splicing: Multiple Control Mechanisms and Involvement in Human Disease. Trends in Genetics, 18, 186-193.
[55] Manabe, T., Ohe, K., Katayama, T., Matsuzaki, S., Yanagita, T., Okuda, H., Bando, Y., Imaizumi, K., Reeves, R., Tohyama, M. and Mayeda, A. (2007) HMGA1a: Sequence-Specific RNA-Binding Factor Causing Sporadic Alzheimer’s Disease-Linked Exon Skipping of Presenilin-2 Pre-mRNA. Genes to Cells, 12, 1179-1191.
[56] Manabe, T., Katayama, T., Sato, N., Gomi, F., Hitomi, J., Yanagita, T., Kudo, T., Honda, A., Mori, Y., Matsuzaki, S., Imaizumi, K., Mayeda, A. and Tohyama, M. (2003) Induced HMGA1a Expression Causes Aberrant Splicing of Presenilin-2 Pre-mRNA in Sporadic Alzheimer’s Disease. Cell Death and Differentiation, 10, 698-708.
[57] Ji, Z., Lee, J.Y., Pan, Z., Jiang, B. and Tian, B. (2009) Progressive Lengthening of 3’ Untranslated Regions of mRNAs by Alternative Polyadenylation during Mouse Embryonic Development. Proceedings of the National Academy of Sciences of the United States of America, 106, 7028-7033.
[58] Ji, Z. and Tian, B. (2009) Reprogramming of 3’ Untranslated Regions of mRNAs by Alternative Polyadenylation in Generation of Pluripotent Stem Cells from Different Cell Types. PLoS ONE, 4, e8419.
[59] Smibert, P., Miura, P., Westholm, J.O., Shenker, S., May, G., Duff, M.O., Zhang, D., Eads, B.D., Carlson, J., Brown, J.B., Eisman, R.C., Andrews, J., Kaufman, T., Cherbas, P., Celniker, S.E., Graveley, B.R. and Lai, E.C. (2012) Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Reports, 1, 277-289.
[60] Meyer, B.E. and Malim, M.H. (1994) The HIV-1 Rev Trans-Activator Shuttles between the Nucleus and the Cytoplasm. Genes & Development, 8, 1538-1547.
[61] Richard, N., Iacampo, S. and Cochrane, A. (1994) HIV-1 Rev Is Capable of Shuttling between the Nucleus and Cytoplasm. Virology, 204, 123-131.
[62] Heaphy, S., Dingwall, C., Ernberg, I., Gait, M.J., Green, S.M., Karn, J., Lowe, A.D., Singh, M. and Skinner, M.A. (1990) HIV-1 Regulator of Virion Expression (Rev) Protein Binds to an RNA Stem-Loop Structure Located within the Rev Response Element Region. Cell, 60, 685-693.
[63] Askjaer, P., Jensen, T.H., Nilsson, J., Englmeier, L. and Kjems, J. (1998) The Specificity of the CRM1-Rev Nuclear Export Signal Interaction Is Mediated by RanGTP. The Journal of Biological Chemistry, 273, 33414-33422.
[64] Taniguchi, I., Mabuchi, N. and Ohno, M. (2014) HIV-1 Rev Protein Specifies the Viral RNA Export Pathway by Suppressing TAP/NXF1 Recruitment. Nucleic Acids Research, 42, 6645-6658.
[65] Li, Y., Bor, Y.C., Misawa, Y., Xue, Y., Rekosh, D. and Hammarskjold, M.L. (2006) An Intron with a Constitutive Transport Element Is Retained in a Tap Messenger RNA. Nature, 443, 234-237.
[66] Aihara, Y., Fujiwara, N., Yamazaki, T., Kambe, T., Nagao, M., Hirose, Y. and Masuda, S. (2011) Enhancing Recombinant Protein Production in Human Cell Lines with a Constitutive Transport Element and mRNA Export Proteins. Journal of Biotechnology, 153, 86-91.
[67] Gruter, P., Tabernero, C., von Kobbe, C., Schmitt, C., Saavedra, C., Bachi, A., Wilm, M., Felber, B.K. and Izaurralde, E. (1998) TAP, the Human Homolog of Mex67p, Mediates CTE-Dependent RNA Export from the Nucleus. Molecular Cell, 1, 649-659.
[68] Liker, E., Fernandez, E., Izaurralde, E. and Conti, E. (2000) The Structure of the mRNA Export Factor TAP Reveals a cis Arrangement of a Non-Canonical RNP Domain and an LRR Domain. The EMBO Journal, 19, 5587-5598.
[69] Tabernero, C., Zolotukhin, A.S., Valentin, A., Pavlakis, G.N. and Felber, B.K. (1996) The Posttranscriptional Control Element of the Simian Retrovirus Type 1 Forms an Extensive RNA Secondary Structure Necessary for Its Function. Journal of Virology, 70, 5998-6011.
[70] Ernst, R.K., Bray, M., Rekosh, D. and Hammarskjold, M.L. (1997) A Structured Retroviral RNA Element That Mediates Nucleocytoplasmic Export of Intron-Containing RNA. Molecular and Cellular Biology, 17, 135-144.
[71] Wickramasinghe, V.O., McMurtrie, P.I., Mills, A.D., Takei, Y., Penrhyn-Lowe, S., Amagase, Y., Main, S., Marr, J., Stewart, M. and Laskey, R.A. (2010) mRNA Export from Mammalian Cell Nuclei Is Dependent on GANP. Current Biology, 20, 25-31.
[72] Wickramasinghe, V.O., Andrews, R., Ellis, P., Langford, C., Gurdon, J.B., Stewart, M., Venkitaraman, A.R. and Laskey, R.A. (2014) Selective Nuclear Export of Specific Classes of mRNA from Mammalian Nuclei Is Promoted by GANP. Nucleic Acids Research, 42, 5059-5071.
[73] Xu, N., Chen, C.Y. and Shyu, A.B. (1997) Modulation of the Fate of Cytoplasmic mRNA by AU-Rich Elements: Key Sequence Features Controlling mRNA Deadenylation and Decay. Molecular and Cellular Biology, 17, 4611-4621.
[74] Bakheet, T., Frevel, M., Williams, B.R., Greer, W. and Khabar, K.S. (2001) ARED: Human AU-Rich Element-Containing mRNA Database Reveals an Unexpectedly Diverse Functional Repertoire of Encoded Proteins. Nucleic Acids Research, 29, 246-254.
[75] Zhang, W., Wagner, B.J., Ehrenman, K., Schaefer, A.W., DeMaria, C.T., Crater, D., DeHaven, K., Long, L. and Brewer, G. (1993) Purification, Characterization, and cDNA Cloning of an AU-Rich Element RNA-Binding Protein, AUF1. Molecular and Cellular Biology, 13, 7652-7665.
[76] Carballo, E., Lai, W.S. and Blackshear, P.J. (1998) Feedback Inhibition of Macrophage Tumor Necrosis Factor-α Production by Tristetraprolin. Science, 281, 1001-1005.
[77] Antic, D., Lu, N. and Keene, J.D. (1999) ELAV Tumor Antigen, Hel-N1, Increases Translation of Neurofilament M mRNA and Induces Formation of Neurites in Human Teratocarcinoma Cells. Genes & Development, 13, 449-461.
[78] Keene, J.D. (1999) Why Is Hu Where? Shuttling of Early-Response-Gene Messenger RNA Subsets. Proceedings of the National Academy of Sciences of the United States of America, 96, 5-7.
[79] Stoecklin, G., Colombi, M., Raineri, I., Leuenberger, S., Mallaun, M., Schmidlin, M., Gross, B., Lu, M., Kitamura, T. and Moroni, C. (2002) Functional Cloning of BRF1, a Regulator of ARE-Dependent mRNA Turnover. The EMBO Journal, 21, 4709-4718.
[80] Yokoshi, M., Li, Q., Yamamoto, M., Okada, H., Suzuki, Y. and Kawahara, Y. (2014) Direct Binding of Ataxin-2 to Distinct Elements in 3’ UTRs Promotes mRNA Stability and Protein Expression. Molecular Cell, 55, 186-198.
[81] Lai, W.S., Carballo, E., Strum, J.R., Kennington, E.A., Phillips, R.S. and Blackshear, P.J. (1999) Evidence that Tristetraprolin Binds to AU-Rich Elements and Promotes the Deadenylation and Destabilization of Tumor Necrosis Factor alpha mRNA. Journal of Molecular Cell Biology, 19, 4311-4323.
[82] Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. and Wright, P.E. (2004) Recognition of the mRNA AU-Rich Element by the Zinc Finger Domain of TIS11d. Nature Structural & Molecular Biology, 11, 257-264.
[83] Fabian, M.R., Frank, F., Rouya, C., Siddiqui, N., Lai, W.S., Karetnikov, A., Blackshear, P.J., Nagar, B. and Sonenberg, N. (2013) Structural Basis for the Recruitment of the Human CCR4-NOT Deadenylase Complex by Tristetraprolin. Nature Structural & Molecular Biology, 20, 735-739.
[84] Sandler, H., Kreth, J., Timmers, H.T. and Stoecklin, G. (2011) Not1 Mediates Recruitment of the Deadenylase Caf1 to mRNAs Targeted for Degradation by Tristetraprolin. Nucleic Acids Research, 39, 4373-4386.
[85] Liu, J. (2008) Control of Protein Synthesis and mRNA Degradation by microRNAs. Current Opinion in Cell Biology, 20, 214-221.
[86] Cannell, I.G., Kong, Y.W. and Bushell, M. (2008) How do microRNAs Regulate Gene Expression? Biochemical Society Transactions, 36, 1224-1231.
[87] Ha, M. and Kim, V.N. (2014) Regulation of microRNA Biogenesis. Nature Reviews Molecular Cell Biology, 15, 509-524.
[88] Brummer, A. and Hausser, J. (2014) MicroRNA Binding Sites in the Coding Region of mRNAs: Extending the Repertoire of Post-Transcriptional Gene Regulation. BioEssays, 36, 617-626.
[89] Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H. and Han, J. (2005) Involvement of microRNA in AU-Rich Element-Mediated mRNA Instability. Cell, 120, 623-634.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.