Share This Article:

Improvement on Quantitative Measurement of Fly Ash Contents Using Laser-Induced Breakdown Spectroscopy

Full-Text HTML XML Download Download as PDF (Size:3071KB) PP. 10-21
DOI: 10.4236/jfcmv.2015.31002    2,671 Downloads   3,079 Views   Citations

ABSTRACT

Contents of fly ash are important factors for the operation of coal-fired plants. Real-time monitoring of coal and fly ash such as unburned carbon in fly ash can be an indicator of the combustion conditions. Because of the strong signal intensity and the relative simplicity of the LIBS (Laser- Induced Breakdown Spectroscopy) technique, LIBS can be applicable for real-time composition measurement of coal and fly ash. This research presented here focused on the clarification of the effects of plasma temperature and coexisting materials on quantitative measurement of fly ash contents. Quantitative capability of LIBS was improved using the proposed plasma temperature correction method. The CO2 effect was also discussed to accurately evaluate unburned carbon in fly ash in exhausts. Using the results shown in this study, quantitative measurement of fly ash contents has been improved for wider applications of LIBS to practical fields.

Cite this paper

Wang, Z. , Deguchi, Y. , Watanabe, H. , Kurose, R. , Yan, J. and Liu, J. (2015) Improvement on Quantitative Measurement of Fly Ash Contents Using Laser-Induced Breakdown Spectroscopy. Journal of Flow Control, Measurement & Visualization, 3, 10-21. doi: 10.4236/jfcmv.2015.31002.

References

[1] Deguchi, Y. (2011) Industrial Applications of Laser Diagnostics. CRC Press, New York. http://dx.doi.org/10.1201/b11497
[2] Noll, R., Mönch, I., Klein, O. and Lamott, A. (2005) Concept and Operating Performance of Inspection Machines for Industrial Use Based on Laser Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 60, 1070-1075. http://dx.doi.org/10.1016/j.sab.2005.05.025
[3] Gaft, M., Sapir-Sofer, I., Modiano, H. and Stana, R. (2007) Laser Induced Breakdown Spectroscopy for Bulk Minerals Online Analyses. Spectrochimica Acta Part B, 62, 1496-1503.
http://dx.doi.org/10.1016/j.sab.2007.10.041
[4] Boué-Bigne, F. (2008) Laser-Induced Breakdown Spectroscopy Applications in the Steel Industry: Rapid Analysis of Segregation and Decarburization. Spectrochimica Acta Part B, 63, 1122-1129.
http://dx.doi.org/10.1016/j.sab.2008.08.014
[5] St-Onge, L., Kwong, E., Sabsabi, M. and Vadas, E.B. (2002) Quantitative Analysis of Pharmaceutical Products by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 57, 1131-1140.
http://dx.doi.org/10.1016/S0584-8547(02)00062-9
[6] Juvé, V., Portelli, R., Boueri, M., Baudelet, M. and Yu, J. (2008) Space-Resolved Analysis of Trace Elements in Fresh Vegetables Using Ultraviolet Nanosecond Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 63, 1047-1053. http://dx.doi.org/10.1016/j.sab.2008.08.009
[7] Ma, Q.L., Motto-Ros, V., Lei, W.Q., Boueri, M., Zheng, L.J., Zeng, H.P., Bar-Matthews, M., Ayalon, A., Panczer, G. and Yu, J. (2010) Multi-Elemental Mapping of a Speleothem Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 65, 707-714. http://dx.doi.org/10.1016/j.sab.2010.03.004
[8] Peter, L., Sturm, V. and Noll, R. (2003) Liquid Steel Analysis with Laser-Induced Breakdown Spectrometry in the Vacuum Ultraviolet. Applied Optics, 42, 6199-6204. http://dx.doi.org/10.1364/AO.42.006199
[9] Wang, Z.Z., Deguchi, Y., Kuwahara, M., Yan, J.J. and Liu, J.P. (2013) Enhancement of Laser-Induced Breakdown Spectroscopy (LIBS) Detection Limit Using a Low-Pressure and Short-Pulse Laser-Induced Plasma Process. Applied Spectroscopy, 67, 1242-1251. http://dx.doi.org/10.1366/13-07131
[10] Wang, Z.Z., Deguchi, Y., Kuwahara, M., Zhang, X.B., Yan, J.J. and Liu, J.P. (2013) Sensitive Measurement of Trace Mercury Using Low Pressure Laser-Induced Plasma. Japanese Journal of Applied Physics Part 2, 52, Article ID: 11NC05.
[11] Yaroshchyk, P., Morrison, R.J.S., Body, D. and Chadwick, B.L. (2005) Quantitative Determination of Wear Metals in Engine Oils Using LIBS: The Use of Paper Substrates and a Comparison between Single- and Double-Pulse LIBS. Spectrochimica Acta Part B, 60, 1482-1485.
http://dx.doi.org/10.1016/j.sab.2005.09.002
[12] Yueh, F.Y., Sharma, R.C., Singh, J.P., Zhang, H.S. and Spencer, W.A. (2002) Evaluation of the Potential of Laser- Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid. Journal of the Air & Waste Management Association, 52, 1307-1315. http://dx.doi.org/10.1080/10473289.2002.10470860
[13] Hubmer, G., Kitzberger, R. and Mörwald, K. (2006) Application of LIBS to the In-Line Process Control of Liquid High-Alloy Steel under Pressure. Analytical and Bioanalytical Chemistry, 385, 219-224.
http://dx.doi.org/10.1007/s00216-006-0321-9
[14] Laville, S., Sabsabi, M. and Doucet, F.R. (2007) Multi-Elemental Analysis of Solidified Mineral Melt Samples by Laser-Induced Breakdown Spectroscopy Coupled with a Linear Multivariate Calibration. Spectrochimica Acta Part B, 62, 1557-1566.
[15] Goueguel, C., Laville, S., Vidal, F., Sabsabi, M. and Chaker, M. (2010) Investigation of Resonance-Enhanced Laser- Induced Breakdown Spectroscopy for Analysis of Aluminium Alloys. Journal of Analytical Atomic Spectrometry, 25, 635-644. http://dx.doi.org/10.1039/b927013b
[16] Diwakar, P.K., Loper, K.H., Matiaske, A.M. and Hahn, D.W. (2012) Laser-Induced Breakdown Spectroscopy for Analysis of Micro and Nanoparticles. Journal of Analytical Atomic Spectrometry, 27, 1110-1119.
http://dx.doi.org/10.1039/c2ja30012e
[17] Panne, U., Haisch, C., Clara, M. and Niessner, R. (1998) Analysis of Glass and Glass Melts during the Vitrification Process of Fly and Bottom Ashes by Laser-Induced Plasma Spectroscopy. Part I: Normalization and Plasma Diagnostics. Spectrochimica Acta Part B, 53, 1957-1968.
http://dx.doi.org/10.1016/S0584-8547(98)00238-9
[18] Ctvrtnickova, T., Mateo, M.P., Yañez, A. and Nicolas, G. (2009) Characterization of Coal Fly Ash Components by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 64, 1093-1097. http://dx.doi.org/10.1016/j.sab.2009.07.032
[19] Gaft, M., Dvir, E., Modiano, H. and Schone, U. (2008) Laser Induced Breakdown Spectroscopy Machine for Online Ash Analyses in Coal. Spectrochimica Acta Part B, 63, 1177-1182.
http://dx.doi.org/10.1016/j.sab.2008.06.007
[20] Yuan, T.B., Wang, Z., Lui, S.L., Fu, Y.T., Li, Z., Liu, J.M. and Ni, W.D. (2013) Coal Property Analysis Using Laser- Induced Breakdown Spectroscopy. Journal of Analytical Atomic Spectrometry, 28, 1045-1053.
[21] Mateo, M.P., Nicolas, G. and Yañez, A. (2007) Characterization of Inorganic Species in Coal by Laser-Induced Break- down Spectroscopy Using UV and IR Radiations. Applied Surface Science, 254, 868-872. http://dx.doi.org/10.1016/j.apsusc.2007.08.043
[22] Yuan, T.B., Wang, Z., Li, L.Z., Hou, Z.Y., Li, Z. and Ni, W.D. (2012) Quantitative Carbon Measurement in Anthracite Using Laser-Induced Breakdown Spectroscopy with Binder. Applied Optics, 51, B22-B29.
[23] Noda, M., Deguchi, Y., Iwasaki, S. and Yoshikawa, N. (2002) Detection of Carbon Content in a High-Temperature and High Pressure Environment Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 57, 701-709. http://dx.doi.org/10.1016/S0584-8547(01)00403-7
[24] Kurihara, M., Ikeda, K., Izawa, Y., Deguchi, Y. and Tarui, H. (2003) Optimal Boiler Control through Real-Time Monitoring of Unburned Carbon in Fly Ash by Laser-Induced Breakdown Spectroscopy. Applied Optics, 42, 6159-6165. http://dx.doi.org/10.1364/AO.42.006159
[25] Ctvrtnickova, T., Mateo, M.P., Yañez, A. and Nicolas, G. (2010) Laser Induced Breakdown Spectroscopy Application for Ash Characterisation for a Coal Fired Power Plant. Spectrochimica Acta Part B, 65, 734-737. http://dx.doi.org/10.1016/j.sab.2010.04.020
[26] Wang, Z.Z., Deguchi, Y., Kuwahara, M., Taira, T., Zhang, X.B., Yan, J.J., Liu, J.P., Watanabe, H. and Kurose, R. (2013) Quantitative Elemental Detection of Size-Segregated Particles Using Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B, 87, 130-138. http://dx.doi.org/10.1016/j.sab.2013.05.034
[27] Zhao, Y.H. and Horlick, G. (2006) A Spectral Study of Charge Transfer and Penning Processes for Cu, Zn, Ag, and Cd in a Glow Discharge. Spectrochimica Acta Part B, 61, 660-673.
http://dx.doi.org/10.1016/j.sab.2006.05.010
[28] Goddard, B.J. (1991) Materials Analysis Using Laser-Based Spectroscopic Techniques. Transactions of the Institute of Measurement and Control, 13, 128-139. http://dx.doi.org/10.1177/014233129101300304
[29] Payling, R. and Larkins, P. (2000) Optical Emission Lines of the Elements. John Wiley & Sons, New York.
[30] Unnikrishnan, V.K., Mridul, K., Nayak, R., Alti, K., Kartha, V.B., Santhosh, C., Gupta, G.P. and Suri, B.M. (2012) Calibration-Free Laser-Induced Breakdown Spectroscopy for Quantitative Elemental Analysis of Materials. Pramana- Journal of Physics, 79, 299-310. http://dx.doi.org/10.1007/s12043-012-0298-1
[31] Cavalcanti, G.H., Teixeira, D.V., Legnaioli, S., Lorenzetti, G., Pardini, L. and Palleschi, V. (2013) One-Point Calibration for Calibration-Free Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Spectrochimica Acta Part B, 87, 51-56. http://dx.doi.org/10.1016/j.sab.2013.05.016

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.