Share This Article:

Broad Antibacterial Activity of Bothrops jararaca Venom against Bacterial Clinical Isolates

Full-Text HTML XML Download Download as PDF (Size:2994KB) PP. 1174-1187
DOI: 10.4236/aim.2014.416127    2,109 Downloads   2,507 Views  

ABSTRACT

Purpose: To evaluate the antibacterial activity of Bothrops jararaca venom against bacterial clinical isolates. Methods: Antibacterial activity of Bothrops jararaca venom was evaluated through agar diffusion method against the following bacteria: Acinetobacter baumannii, Oxacillinase-producing Acinetobacter baummanii, extended-spectrum β-lactamase-producing (ESBL) Enterobacter aerogenes, Escherichia coli, Escherichia coli ESBL, Klebsiella pneumoniae, Klebsiella pneumoniae ESBL, Proteus mirabilis, Pseudomonas aeruginosa, metallo β-lactamase-producing Pseudomonas aeruginosa, Staphylococcus aureus, oxacillin resistant Staphylococus aureus (ORSA), Staphylococcus epidermidis, and oxacillin resistant Staphylococus epidermidis. Minimum inhibitory concentration was determined through microdilution plate protocol. Results: The venom presented antibacterial activity against all tested bacteria. More pronounced results were observed to Gram- positive bacteria, especially against ORSA. Conclusion: The present study evidenced the great antibacterial potential of Bothrops jararaca venom showing promising results even with resistant bacterial clinical isolates.

Cite this paper

Cendron, L. , Bertol, C. , Fuentefria, D. , Calegari, E. , Dallegrave, E. , Moura, D. , Moura, K. , Marques, M. and Rossato, L. (2014) Broad Antibacterial Activity of Bothrops jararaca Venom against Bacterial Clinical Isolates. Advances in Microbiology, 4, 1174-1187. doi: 10.4236/aim.2014.416127.

References

[1] Queiroz, S. (2010) Identificção da atividade antimicrobiana no veneno da serpente Bothrops moojeni em bactérias gram negativas. 94 p.
[2] Tapia, C. (2012) Antifúngicos y resistencia. Revista Chilena de Infectología, 29, 357.
http://dx.doi.org/10.4067/S0716-10182012000300020
[3] Chumpolkulwong, N. (2004) Effects of E. coli Ribosomal Protein S12 Mutations on Cell-Free Protein Synthesis. European Journal of Biochemistry, 271, 1127-1134.
http://dx.doi.org/10.1111/j.1432-1033.2004.04016.x
[4] Chopra, I., Hesse, L. and O’neil, L. (2002) Exploiting Current Understanding of Antibiotic Action for Discovery of New Drugs. Journal of Applied Microbiology, 92, 4S-15S.
http://dx.doi.org/10.1046/j.1365-2672.92.5s1.13.x
[5] Ciscotto, P. (2005) Purificação e caracterização biolóGica (estrutural, antibacteriana, antiparasitária, hemolítica e antigênica) de componentes do veneno da serpente Bothrops jararaca. 88 p.
[6] Ferreira, B.L., Santos, D.O., Dos Santos, A.L., et al. (2011) Comparative Analysis of Viperidae Venoms Antibacterial Profile: A Short Communication for Proteomics. Evidence-Based Complementary and Alternative Medicine, 2011, Article ID: 960267.
[7] Gomes, V.M., Carvalho, A.O., Da Cunha, M., et al. (2005) Purification and Characterization of a Novel Peptide with Antifungal Activity from Bothrops jararaca Venom. Toxicon, 45, 817-827.
http://dx.doi.org/10.1016/j.toxicon.2004.12.011
[8] Castro, F. (2011) Avaliação da atividade não citotóxica do veneno da cobra Bothrops pauloensis em células mononucleares do sangue periférico humano. 67 p.
[9] Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[10] CLSI (2009) Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard. 1-76.
[11] CLSI (2009) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. 1-88.
[12] Neves, M. (2008) Avaliação da atividade antifúngica in vitro do veneno das serpentes amazônicas Bothrops atrox (LINNAEUS, 1758) e crotalus durissus ruruima (HOGE, 1965). UEA.
[13] Cunha, E., Martins, O. (2012) Principais compostos químicos presente nos venenos de cobras dos gêneros Bothrops e Crotalus—uma revisão. Revista Eletrônica de Educação e Ciência, 2, 21-26.
[14] Caproni, P. (2009) Ação da Bothropstoxina-1 e do veneno total de Bothrops jararacussu irradiados sobre o sistema imune. 60 p.
[15] Ferreira, B. (2007) Identificação da atividade antibiótica e relação Estrutura-atividade de moléculas de origem sintética e animal. 110 p.
[16] Du, X.Y. and Clemetson, K.J. (2002) Snake Venom L-Amino Acid Oxidases. Toxicon, 40, 659-665.
http://dx.doi.org/10.1016/S0041-0101(02)00102-2
[17] Faust, A., Niefind, K., Hummel, W. and Schomburg, D. (2007) The Structure of a Bacterial L-Amino Acid Oxidase from Rhodococcus opacus Gives New Evidence for the Hydride Mechanism for Dehydrogenation. Journal of Molecular Biology, 367, 234-248.
[18] Kommoju, P., Macheroux, P. and Ghisla, S. (2007) Molecular Cloning, Expression and Purification of L-amino Acid Oxidase from the Malayan Pit Viper Calloselasma rhodostoma. Protein Expression and Purification, 52, 89-95. http://dx.doi.org/10.1016/j.pep.2006.09.016
[19] Braga, M., Martins, A., Amora, D., et al. (2008) Purification and Biological Effects of L-Amino Acid Oxidase Isolated from Bothrops insularis Venom. Toxicon, 51, 199-207.
http://dx.doi.org/10.1016/j.toxicon.2007.09.003

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.