Share This Article:

Fundamental Open Questions on Engineering of “Super” Hydrogen Sorption in Graphite Nanofibers: Relevance for Clean Energy Applications

Full-Text HTML XML Download Download as PDF (Size:3698KB) PP. 1151-1165
DOI: 10.4236/ajac.2014.516122    2,689 Downloads   3,316 Views   Citations

ABSTRACT

Herein, some fundamental open questions on engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials are considered, namely: 1) on thermodynamic stability and related characteristics of some hydrogenated graphene layers nanostructures: relevance to the hydrogen storage problem; 2) determination of thermodynamic characteristics of graphene hydrides; 3) a treatment and interpretation of some recent STM, STS, HREELS/LEED, PES, ARPS and Raman spectroscopy data on hydrogensorbtion with epitaxial graphenes; 4) on the physics of intercalation of hydrogen into surface graphene-like nanoblisters in pyrolytic graphite and epitaxial graphenes; 5) on the physics of the elastic and plastic deformation of graphene walls in hydrogenated graphite nanofibers; 6) on the physics of engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials, in the light of analysis of the Rodriguez-Baker extraordinary data and some others. These fundamental open questions may be solved within several years.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Nechaev, Y. , Yürüm, A. , Tekin, A. , Yavuz, N. , Yürüm, Y. and Veziroglu, T. (2014) Fundamental Open Questions on Engineering of “Super” Hydrogen Sorption in Graphite Nanofibers: Relevance for Clean Energy Applications. American Journal of Analytical Chemistry, 5, 1151-1165. doi: 10.4236/ajac.2014.516122.

References

[1] Zuettel, A. (2011) Hydrogen the Future Energy Carrier. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
http://www.uk-shec.org.uk/ukshec/showcase/ShowcasePresentations.html
[2] Nechaev, Y.S. and Veziroglu, T.N. (2013) On Thermodynamic Stability of Hydrogenated Graphene Layers, Relevance to the Hydrogen On-Board Storage. The Open Fuel Cells Journal, 6, 21-39.
http://dx.doi.org/10.2174/1875932701306010021
[3] Nechaev, Y.S. and Veziroglu, T.N. (2013) Thermodynamic Aspects of the Stability of the Graphene/Graphane/Hydrogen Systems, Layers, Relevance to the Hydrogen On-Board Storage Problem. Advances in Materials Physics and Chemistry, 3, 255-280.
http://dx.doi.org/10.4236/ampc.2013.35037
[4] Chambers, A., Park, C., Terry, R., Baker, K. and Rodriguez, N.M. (1998) Hydrogen Storage in Graphite Nanofibers. Journal of Physical Chemistry B, 102, 4253-4256.
http://dx.doi.org/10.1021/jp980114l
[5] Park, C., Anderson, P.E., Chambers, A., Tan, C.D., Hidalgo, R. and Rodriguez, N.M. (1999) Further Studies of the Interaction of Hydrogen with Graphite Nanofibers. Journal of Physical Chemistry B, 103, 10572-10581.
http://dx.doi.org/10.1021/jp990500i
[6] Nelly, M., Rodriguez, N.M., Terry, R. and Baker, K. (1997) Storage of Hydrogen in Layered Nanostructures. US Patent No. 5653951.
[7] Nelly, M., Rodriguez, N.M., Terry, R. and Baker, K. (2000) Method for Introducing Hydrogen into Layered Nanostructures. US Patent No. 6159538.
[8] Baker, R.T.K. (2005) Encyclopedia of Materials: Science and Technology. Elsevier, Amsterdam, 932.
[9] Gupta, B.P. and Srivastava, O.N. (2000) Synthesis and Hydrogenation Behavior of Graphitic Nanofibers. Journal of Hydrogen Energy, 25, 825-830.
http://dx.doi.org/10.1016/S0360-3199(99)00104-4
[10] Gupta, B.P. and Srivastava, O.N. (2001) Further Studies on Microstructural Characterization and Hydrogenation Behavior of Graphitic Nanofibers. International Journal of Hydrogen Energy, 26, 857-862.
http://dx.doi.org/10.1016/S0360-3199(01)00021-0
[11] Gupta, B.K., Tiwari, R.S. and Srivastava, O.N. (2004) Studies on Synthesis and Hydrogenation Behavior of Graphitic Nanofibers Prepared through Palladium Catalyst Assisted Thermal Cracking of Acetylene. Journal of Alloys and Compounds, 381, 301-308.
http://dx.doi.org/10.1016/j.jallcom.2004.03.094
[12] Gupta, B.P. and Srivastava, O.N. (2006) New Carbon Variants: Graphitic Nanofibers (Nano-Springs, Nano-Shoeckers) as Hydrogen Storage Materials. International Scientific Journal for Alternative Energy and Ecology, 5, 63.
[13] Suh, M.P., Park, H.J., Prasad, T.K. and Lim, D.W. (2012) Hydrogen Storage in Metal-Organic Frameworks. Chemical Reviews, 112, 782-835.
http://dx.doi.org/10.1021/cr200274s
[14] Tozzini, V. and Pellegrini, V. (2013) Prospects for Hydrogen Storage in Graphene. Physical Chemistry Chemical Physics, 15, 80-89.
http://dx.doi.org/10.1039/c2cp42538f
[15] Satyapal, S., Petrovic, J., Read, C., Thomas, G. and Ordaz, G. (2007) The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements. Catalysis Today, 120, 246-256.
http://dx.doi.org/10.1016/j.cattod.2006.09.022
[16] DOE (2012) Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles.
http://wwwl.eere.energy.gov/hydrogenandfuelcells/storage/%20pdfs/targets_onboard_hydro_storage.pdf
[17] Fruchart, D. (2011) Large Scale Development of Metal Hydrides for Stationary and Nomad Hydrogen Storage Units. Which Are Potential Partners to Built Innovative Solutions for Sustainable and Clean Energy Systems? In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html
[18] Akiba, E. (2011) Hydrogen Related R&D and Hydrogen Storage Materials in Japan. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
[19] Kim, J.W. (2011) Current Status of R&D on Hydrogen Production and Storage in Korea. In: Materials of International Hydrogen Research Showcase 2011, University of Birmingham, Birmingham, 13-15 April 2011.
[20] Maeland, A.J. (2002) The Storage of Hydrogen for Vehicular Use—A Review and Reality Check. International Scientific Journal for Alternative Energy and Ecology, 1, 19-29.
[21] Rzepka, M., Bauer, E., Reichenauer, G., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E. and Braue, W. (2005) Hydrogen Storage Capacity of Catalytically Grown Carbon Nanofibers. The Journal of Physical Chemistry B, 109, 14979-14989.
http://dx.doi.org/10.1021/jp051371a
[22] Reichenauer, G., Rzepka, M., Bauer, E., Schliermann, T., Bernhardt, B., Bohmhammel, K., Henneberg, E., Knoll, U., Maneck, H.E. and Braue, W. (2006) Hydrogen Storage Capacity of Catalytically Grown Carbon Nanofibers. Proceedings of International Conference on Carbon, The Robert Gordon University, Aberdeen, 6-21 July 2006.
[23] Ramos, A., Cameán, I. and García, A.B. (2013) Graphitization Thermal Treatment of Carbon Nanofibers. Carbon, 59, 2-32.
http://dx.doi.org/10.1016/j.carbon.2013.03.031
[24] Camacho, R.M. and Guirado-López, R.A. (2013) Adsorption and Diffusion of Hydrogen on C60-Supported Ptn Clusters. The Journal of Physical Chemistry C, 117, 10059-10069.
http://dx.doi.org/10.1021/jp3113123
[25] Gao, Q., Qu, F.Y., Lin, H.M. and Zheng, W.T. (2013) A Simple Method to Synthesize Graphitic Mesoporous Carbon Materials with Different Structures. Journal of Porous Materials, 20, 983-988.
http://dx.doi.org/10.1007/s10934-013-9677-3
[26] He, Z., Wang, S., Iqbal, Z. and Wang, X.Q. (2013) Hydrogen Storage in Hierarchical Nanoporous Silicon-Carbon Nanotube Architectures. International Journal of Energy Research, 37, 754-760.
http://dx.doi.org/10.1002/er.2979
[27] Lueking, A.D., Yang, R.T., Rodriguez, N.M. and Baker, R.T.K. (2004) Hydrogen Storage in Graphite Nanofibers: Effect of Synthesis Catalyst and Pretreatment Conditions. Langmuir, 20, 704-721.
http://dx.doi.org/10.1021/la0349875
[28] Strobel, R., Garche, J., Moseley, P.T., Jorissen, L. and Wolf, G. (2006) Hydrogen Storage by Carbon Materials. Journal of Power Sources, 159, 781-801.
http://dx.doi.org/10.1016/j.jpowsour.2006.03.047
[29] Yürüm, Y., Taralp, A. and Veziroglu, T.N. (2009) Storage of Hydrogen in Nanostructured Carbon Materials. International Journal of Hydrogen Energy, 34, 3784-3798.
http://dx.doi.org/10.1016/j.ijhydene.2009.03.001
[30] Kowalczyk, P., Holyst, R., Terrones, M. and Terrones, H. (2007) Hydrogen Storage in Nanoporous Carbon Materials; Myth and Facts. Physical Chemistry Chemical Physics, 9, 1786-1792.
http://dx.doi.org/10.1039/b618747a
[31] Nechaev, Y.S. (2012) Solid Hydrogen in Multigraphane Nanostructures. International Scientific Journal for Fundamental and Applied Physics, 1, 38-60.
[32] Nechaev, Y.S. (2011) On the Solid Hydrogen Carrier Intercalation in Graphane-Like Regions in Carbon-Based Nanostructures. International Journal of Hydrogen Energy, 36, 9023-9031. http://dx.doi.org/10.1016/j.ijhydene.2011.04.073
[33] Nechaev, Y.S. (2011) The High-Density Hydrogen Carrier Intercalation in Graphane-Like Nanostructures, Relevance to Its On-Board Storage in Fuel-Cell-Powered Vehicles. The Open Fuel Cells Journal, 4, 16-29.
http://dx.doi.org/10.2174/1875932701104010016
[34] Nechaev, Y.S. (2006) The Nature, Kinetics, and Ultimate Storage Capacity of Hydrogen Storage by Carbon Nanostructures. Physics-Uspekhi, 49, 563-591.
http://dx.doi.org/10.1070/PU2006v049n06ABEH002424
[35] Nechaev, Y.S. (2010) Carbon Nanomaterials, Relevance to the Hydrogen Storage Problem. Journal of Nano Research, 12, 1-44.
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.12.1
[36] Sofo, J.O., Chaudhari, A.S. and Barber, G.D. (2007) Graphane: A Two-Dimensional Hydrocarbon. Physical Review B, 75, Article ID: 153401.
http://dx.doi.org/10.1103/PhysRevB.75.153401
[37] Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K. and Novoselov, K.S. (2009) Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 323, 610-613.
http://dx.doi.org/10.1126/science.1167130
[38] Openov, L.A. and Podlivaev, A.I. (2010) Thermal Desorption of Hydrogen from Graphane. Technical Physics Letters, 36, 31-33.
http://dx.doi.org/10.1134/S1063785010010104
[39] Dzhurakhalov, A.A. and Peeters, F.M. (2011) Structure and Energetics of Hydrogen Chemisorbed on a Single Graphene Layer to Produce Graphane. Carbon, 49, 3258-3266.
http://dx.doi.org/10.1016/j.carbon.2011.03.052
[40] Pimenova, S.M., Melkhanova, S.V., Kolesov, V.P. and Lobach, A.S. (2002) The Enthalpy of Formation and C-H Bond Enthalpy Hydrofullerene C60H36. The Journal of Physical Chemistry B, 106, 2127-2130.
http://dx.doi.org/10.1021/jp012258x
[41] Bauschlicher Jr., C.W. and So, C.R. (2002) High Coverages of Hydrogen on (10.0), (9.0) and (5.5) Carbon Nanotubes. Nano Letters, 2, 337-341.
http://dx.doi.org/10.1021/nl020283o
[42] Wojtaszek, M., Tombros, N., Garreta, A., Van Loosdrecht, P.H.M and Van Wees, B.J. (2011) A Road to Hydrogenating Graphene by a Reactive Ion Etching Plasma. Journal of Applied Physics, 110, Article ID: 063715.
http://dx.doi.org/10.1063/1.3638696
[43] Castellanos-Gomez, A., Wojtaszek, M., Arramel, Tombros, N. and Van Wees, B.J. (2012) Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy. Small, 8, 1607-1613.
http://dx.doi.org/10.1002/smll.201101908
[44] Bocquet, F.C., Bisson, R., Themlin, J.M., Layet, J.M. and Angot, T. (2012) Reversible Hydrogenation of Deuterium-Intercalated Quasi-Free-Standing Graphene on SiC (0001). Physical Review B—Condensed Matter and Materials Physics, 85, Article ID: 201401.
http://dx.doi.org/10.1103/PhysRevB.85.201401
[45] Luo, Z.Q., Yu, T., Kim, K.J., Ni, Z.H., You, Y.M., Lim, S., Shen, Z.X., Wang, S.Z. and Lin, J.Y. (2009) Thickness-Dependent Reversible Hydrogenation of Graphene Layers. ACS Nano, 3, 1781-1788.
http://dx.doi.org/10.1021/nn900371t
[46] Watcharinyanon, S., Virojanadara, C., Osiecki, J.R., Zakharov, A.A, Yakimova, R., Uhrberg, R.I.G. and Johansson, L.I. (2011) Hydrogen Intercalation of Graphene Grown on 6H-SiC (0001). Surface Science, 605, 1662-1668.
http://dx.doi.org/10.1016/j.susc.2010.12.018
[47] Hornekaer, L., Sljivancanin, Z., Xu, W., Otero, R., Rauls, E., Stensgaard, I., Lægsgaard, E., Hammer, B. and Besenbacher, F. (2006) Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface. Physical Review Letters, 96, Article ID: 156104.
http://dx.doi.org/10.1103/PhysRevLett.96.156104
[48] Waqar, Z., Klusek, Z., Denisov, E., Kompaniets, T., Makarenko, I., Titkov, A. and Saleem, A. (2000) Effect of Atomic Hydrogen Sorption and Desorption on Topography and Electronic Properties of Pyrolytic Graphite. Electrochemical Society Proceedings, 16, 254-265.
[49] Waqar, Z. (2007) Hydrogen Accumulation in Graphite and Etching of Graphite on Hydrogen Desorption. Journal of Materials Science, 42, 1169-1176.
http://dx.doi.org/10.1007/s10853-006-1453-1
[50] Balog, R., Jorgensen, B., Wells, J., Lægsgaard, E., Hofmann, P., Besenbacher, F. and Hornekær, L. (2009) Atomic Hydrogen Adsorbate Structures on Graphene. Journal of the American Chemical Society, 131, 8744-8745.
http://dx.doi.org/10.1021/ja902714h
[51] Xiang, H.J., Kan, E.J., Wei, S.H., Gong, X.G. and Whangbo, M.H. (2010) Thermodynamically Stable Single-Side Hydrogenated Graphene. Physical Review B, 82, Article ID: 165425.
http://dx.doi.org/10.1103/PhysRevB.82.165425

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.