Share This Article:

Land-Use Impact and Nitrate Analysis to Validate DRASTIC Vulnerability Maps Using a GIS Platform of Pablillo River Basin, Linares, N.L., Mexico

Full-Text HTML XML Download Download as PDF (Size:4200KB) PP. 1468-1489
DOI: 10.4236/ijg.2014.512120    2,888 Downloads   3,326 Views   Citations


Preventive management of groundwater resources and their protection against pollution is one of the major challenges of our society. Groundwater systems are related with the surficial processes like territorial administration that is one of the most important tasks into the human development, because it involves serious problems to define the spatial medium, the industrial site-selection and the land-use allocation. Land-use and anthropogenic distribution could be the origin of the emission of pollutants that constitutes a serious health risk in urban areas. Nitrate was used as a pollution indicator in the Pablillo River Basin (PRB), to know the evolution of groundwater quality between 1981 and 2009 using GIS platform linked to vulnerability maps of DRASTIC (Depth to the water table; net groundwater Recharge; Aquifer type; Soil type; Topography; Impact of the vadose zone and hydraulic Conductivity of the saturated zone). The study area is centered on the Linares city; changes in aquifer vulnerability were assessed over time on two stages (2007 and 2001). In both cases, depth from surface to groundwater plays an important role by being the most dynamic variable over time. This study shows that the depth of water table is the key factor in the evaluation of groundwater vulnerability. The significance of land-use impact in contamination process called Index of Pollution Risk (IPR) and nitrate distribution process in the aquifer system was used as anthropogenic indicator together with the IPR in order to associate the land-use, the aquifer-vulnerability and human-activities. The final map of IPR allows determining possible polluted zones verified by high nitrate contents over the aquifer system. Land-use proved to be an important parameter necessary to correct the vulnerability maps using the DRASTIC method. This assessment is valid for situations where a specific time is defined because six of seven parameters change their properties in a very long term. The IPR-map could be an important key tool to prevent complex scenarios of groundwater contamination and to improve the aquifer management for decision makers, governments and private companies.

Cite this paper

Pórcel, R. , Schüth, C. , León-Gómez, H. , Hoppe, A. and Lehné, R. (2014) Land-Use Impact and Nitrate Analysis to Validate DRASTIC Vulnerability Maps Using a GIS Platform of Pablillo River Basin, Linares, N.L., Mexico. International Journal of Geosciences, 5, 1468-1489. doi: 10.4236/ijg.2014.512120.


[1] Margat, J. (1968) Vulnerabilite des nappes d’eau souterrune a la pollution (Groundwater Vulnerability to Contamination). Bases de al cartographie (Doc.) 68 SGC 198HYD, BRGM, Orleans.
[2] Aller, L., Bennett, T., Lehr, J.H., Petty, R.H. and Hackett, G. (1987) DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. Robert S. Kerr Environmental Research Laboratory, Ada.
[3] Foster, S.S.D. (1987) Fundamental Concepts in Aquifer Vulnerability, Pollution Risk and Protection Strategy. In: Van Duijvenbooden, W. and Van Waegenigh, H.G., Eds., Vulnerability of Soil and Ground Water Pollutants, TNO Committee on Hydrological Research Information, The Hague, 69-86.
[4] Van Stempvroort, D., Ewert, L. and Wasseernaar, L. (1992) AVI: A Method for Groundwater Protection Mapping in the Praire Province of Canada. National Hydrology Research Institute, Saskatoon.
[5] Civita, M. (1994) Le Carte della vulnerabilit`a degli acquiferi all’inquinamiento: Teoria e Pratica (Contamination Vulnerability Mapping of the Aquifer: Theory and Practice). Quaderni di Tecniche di Protezione Ambientale, Pitagora.
[6] Jamrah, A., Futaisi, A.A., Rajmohan, N. and Al-Yaroubi, S. (2007) Assessment of Groundwater Vulnerability in the Coastal Region of Oman Using DRASTIC Index Method in GIS Environment. Environmental Monitoring and Assessment, 147, 125-138.
[7] Panagopoulos, G.P., Antonakos, A. and Lambrakis, N.J. (2006) Optimization of the DRASTIC Method for Groundwater Vulnerability Assessment via the Use of Simple Statistical Methods and GIS. Hydrogeology Journal, 14, 894-911.
[8] Wang, Y., Merkel, B.J., Li, Y., Ye, H., Fu, S. and Ihm, D. (2007) Vulnerability of Groundwater in Quaternary Aquifers to Organic Contaminants: A Case Study in Wuhan City, China. Environmental Geology, 53, 479-484.
[9] Ahmed, A.A. (2009) Using Generic and Pesticide DRASTIC GIS-Based Models for Vulnerability Assessment of the Quaternary Aquifer. Hydrogeology Journal, 17, 1203-1217.
[10] Al-Zabet, T. (2002) Evaluation of Aquifer Vulnerability to Contamination Potential Using DRASTIC Method. Environmental Geology, 43, 203-208.
[11] Cameron, E. and Peloso, G.F. (2001) An Application of Fuzzy Logic to the Assessment of Aquifers’ Pollution Potential. Environmental Geology, 40, 1035-1315.
[12] Kim, Y. and Hamm, S. (1999) Assessment of the Potential for Groundwater Contamination Using the DRASTIC/EGIS Technique, Cheongju Area, South Korea. Hydrogeology Journal, 7, 227-235.
[13] Melloul, A.J. and Collin, M. (1998) A Proposed Index for Aquifer Water Quality Assessment: The Case of Israel’s Sharon Region. Journal of Environmental Management, 54, 131-142.
[14] Merchant, J. (1994) GIS-Based Groundwater Pollution Hazard Assessment: A Critical Review of the DRASTIC Model. Photogrammetric Engineering and Remote Sensing, 60, 1117-1127.
[15] Rosen, L. (1994) A Study If the DRASTIC Methodology with Emphasis on Swedish Conditions. Ground Water, 32, 278-285.
[16] Kalinski, R.J., Kelly, W.E., Bogardi, I., Ehrman, R.L. and Yamammoto, P.O. (1994) Correlation between DRASTIC Vulnerabilities and Incidents of VOC Contamination of Municipal Wells Nebraska. Ground Water, 32, 31-34.
[17] McLay, C., Dragden, R., Sparling, G. and Selvarajah, N. (2001) Predicting Groundwater Nitrate Concentrations in a Region for Mixed Agricultural Land Use: A Comparison of Three Approaches. Environmental Pollutant, 115, 191-204.
[18] Garrett, P., Williams, J.S., Rossoll, C.F. and Tolman, A.L. (1989) Are Ground Water Vulnerability Classification Systems Workable? Proceedings of FOCUS Conference on Eastern Regional Ground Water Issues, Kitchener, 17-19 October, 329-343.
[19] Vbra, J. and Zaporozec, A. (1994) Guidebook on Mapping Groundwater Vulnerability. Verlag Heinz Heise, Hannover.
[20] Lee, S. (2003) Evaluation of Waste Disposal Site Using the DRASTIC System in Southern Korea. Environmental Geology, 44, 654-664.
[21] Mendoza, J.A. and Barmen, G. (2006) Assessment of Groundwater Vulnerability in the Rio Antiguas, Nicaragua. Environmental Geology, 50, 569-580.
[22] Secunda, S., Collin, M. and Melloul, A.J. (1998) Groundwater Vulnerability Assessment Using a Composite Model Combining DRASTIC with Extensive Land Use in Israel’s Sharon Region. Environmental Management, 54, 39-57.
[23] Sener, E., Sener, S. and Davraz, A. (2009) Assessment of Aquifer Vulnerability Based on GIS and DRASTIC Methods: A Case Study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydrogeology Journal, 17, 2023-2035.
[24] Laskar, A. (2003) Integrating GIS and Multi-Criteria Decision Making Techniques for Land Resource Planning. Master’s Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede.
[25] Eldrandaly, K., Eldin, N., Sui, D., Shouman, M. and Nawara, G. (2005) Integrating GIS and MCDM Using COM Technology. The International Arab Journal of Information Technology, 2, 162-167.
[26] Barrett, M.H. (2004) Characteristics of Urban Groundwater. In: Lerner, D.N., Ed., Urban Groundwater Pollution, A.A. Balkema Publishers, Rotterdam, 29-50.
[27] Foster, S., Lawrence, A. and Morris, B. (1998) Groundwater in Urban Development: Assessing Management Needs and Formulating Policy Strategies. World Bank Technical Paper No 390.
[28] Lerner, D.N. (2004) Urban Groundwater Pollution. Taylor & Francis, London.
[29] Ward, M.H., de Kok, T.M., Lellallois, P., Brender, J., Gulis, G., Nolan, B.T. and VanDerslice, J. (2005) Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs. Environmental Health Perspectives, 113, 1607-1614.
[30] Canter, L.W. (1997) Nitrates in Groundwater. Lewis, Boca Raton.
[31] INEGI (2010) Censo de Poblacion y Vivienda 2010. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[32] Davila Porcel, R.A. (2011) Desarrollo sostenible de usos de suelo en ciudades en crecimiento, aplicando Hidrogeologia Urbana como parametro de planificacion territorial: Caso de estudio Linares. Doctorado en Ciencias con especialidad en Geociencias, Universidad Autonoma de Nuevo Leon, Nuevo Leon.
[33] Beller, H., Eaton, G.F., Ekwurzel, B.E., Esser, B.K., Hu, Q., Hudson, G.B., Leif, R., McNab, W., Moody-Bartel, C., Moore, K. and Moran, J.E. (2005) California GAMA Program: Sources and Transport of Nitrate in Groundwater in the Livermore Valley Basin. Lawrence Livermore National Laboratory (LLNL), Livermore.
[34] Edmunds, W.W. and Gaye, G.B. (1997) Naturally High Nitrate Concentrations in Ground Waters from the Sahel. Journal of Environmental Quality, 26, 1231-1239.
[35] Hossain, F., Hill, J. and Bagtzoglou, A.C. (2007) Geostatistically Based Management of Arsenic Contaminated Ground Water in Shallow Wells of Bangladesh. Water Resources Management, 21, 1245-1261.
[36] Hussain, I., Raschid, L., Hanjra, M., Marikar, F. and van der Hoek, W. (2001) A Framework for Analyzing Socioeconomic, Health and Environmental Impacts of Wastewater Use in Agriculture in Developing Countries. Working Paper 26, International Water Management Institute (IWMI), Colombo.
[37] Kass, A., Gavrieli, I., Yechieli, Y., Vengosh, A. and Starinsky, A. (2005) The Impact of Freshwater and Wastewater Irrigation on the Chemistry of Shallow Groundwater: A Case Study from the Israeli Coastal Aquifer. Journal of Hydrology, 300, 314-331.
[38] Tang, C., Chen, J., Shindo, S., Sakura, Y., Zhang, W. and Shen, Y. (2004) Assessment of Groundwater Contamination by Nitrates Associated with Wastewater Irrigation: A Case Study in Shijiazhuang Region, China. Hydrological Processes, 18, 2303-2312.
[39] Vazquez, J.C.G., Grande, J.A., Barragan, F.J., AOcana, J.A. and Torre, M.L.D.L. (2005) Nitrate Accumulation and Other Components of the Groundwater in Relation to Croppings in an Aquifer in Southwestern Spain. Water Resources Management, 19, 1-22.
[40] Li, F.M., Song, Q.H., Liu, H.S., Li, F.R. and Liu, X.L. (2001) Effects of Pre-Sowing Irrigation and Phosphorus Application on Water Use and Yield of Spring Wheat under Semi-Arid Conditions. Agricultural Water Management, 49, 173-183.
[41] Zizhen, L. and Hong, L. (1998) Research on the Regulation of Water and Fertilizers and a Crop Growth Model of Spring, Wheat in Farmland of Semi-Arid Regions. Ecological Modelling, 107, 279-287.
[42] De Cserna, Z. (1956) Tectonica de la Sierra Madre Oriental de Mexico, entre Torreon y Monterrey, Mexico. XX Congreso Geologico Internacional, Mexico City, 87.
[43] De Leon-Gomez, H. (1993) Die Unterlaufigkeit der Talsperre Jose Lopez Portillo/Cerro Prieto auf einer Kalkstein— Mergelstein—Wechselfolge bei Linares, Nuevo Leon/Mexiko. Ph.D. Dissertation, RWTH Aachen, Aachen.
[44] Ruiz-Martinez, M.A. (1990) Zur Gliederung Verbreitung und Okologischen Bewertung der BOden in der Region von Linares, N.L. Mexiko. Diplomarbeit, Georg-August-Universitat GOttingen, GOttingen.
[45] Ruiz-Martinez, M.A. and Werner, J. (1997) Research into the Quaternary Sediments and Climatic Variations in NE Mexico. Quaternary International, 43-44, 145-151.
[46] Mao, Y.Y., Zhang, X.G. and Wang, L.S. (2006) Fuzzy Pattern Recognition Method for Assessing Groundwater Vulnerability to Pollution in the Zhangji Area. Journal of Zhejiang University Science A, 7, 1917-1922.
[47] CNA (2002) Determinacion de la disponibilidad de agua en el acuifero Citricola sur, estado de Nuevo Leon. Comision Nacional del Agua, Mexico City, 1-22.
[48] CNA (2007) Base de datos hidrometeorologicos, estaciones climatologicas e hidrometricas ubicadas al interior de la Cuenca del Rio Pablillo. Monterrey.
[49] CNA (2007) Estadisticas del Agua en Mexico. Primera Edicion, 2007 edn Comison Nacional del Agua, Mexico City.
[50] INEGI (1977) Carta Edafologica (Linares G14-C58), Escala 1:50000. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[51] INEGI (1983) Carta Geologica (Linares G14-11), Escala 1:250000. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[52] INEGI (2006) Carta Topografica (Linares G-14-11), Escala 1:250.000. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[53] ESRI (2010) ArcGIS 9.3. Environmental Systems Research Institute (ESRI), Redlands.
[54] De la Garza-Gonzalez, S.I. (2000) Estudio geologico/hidrogeologico de la region citricola Linares-Hualahuises, Nuevo Leon, NE-Mexico. Tesis de Licenciatura, Facultad de Ciencias de la Tierra, Universidad Autonoma de Nuevo Leon, Nuevo Leon.
[55] INEGI (1977) Carta Geologica (G14-C67), Escala 1:50000. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[56] SGM (2009) Carta Geologico—Minera Hoja Linares 84-G14-11_GM Servicio Geologico Mexicano.
[57] INEGI (1983) Carta Hidrologica de Aguas Subterraneas (Linares G14-11), Escala 1:250000. Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.
[58] INEGI (1999) Carta Topografica (Linares G-14-C58), Escala 1:50000. Segunda Edicion, Instituto Nacional de Estadistica, Geografia e Informatica, Aguascalientes.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.