Spatial Distribution of Hemlock Woolly Adelgid Induced Hemlock Mortality in the Southern Appalachians

Download Download as PDF (Size:3842KB)  HTML   XML  PP. 492-506  
DOI: 10.4236/ojf.2014.45053    1,771 Downloads   2,084 Views   Citations


Hemlock woolly adelgid (Adelges Tsugae Annand, HWA) outbreaks are posing a major threat to eastern hemlock (Tsuga canadensis L. Carr.) and Carolina hemlock (Tsuga caroliniana Engelm.) forest landscapes in the eastern USA. As foundation species, hemlocks play a variety of functional roles in forest landscapes. These species usually occur as isolated canopies and mixed species in landscapes where variation in topography is extreme. Spatially explicit inventory information on HWA induced hemlock mortality at landscape scale does not exist. High resolution aerial imageries enable landscape scale assessment even at the individual tree level. Accordingly, our goal was to investigate spatial pattern and distribution of HWA induced hemlock mortality using a high resolution aerial image mosaic in the Linville River Gorge, Southern Appalachians, western North Carolina. Our study objectives were: 1) to detect dead trees within the Lower Linville River watershed; 2) to estimate the area occupied by dead trees in the forest canopy surface; 3) to investigate the relationship of dead hemlocks and topography; and 4) to define the spatial pattern of the dead trees. We found ca. 10,000 dead trees within the study area, occupying over 7 ha of the canopy surface with an average area of 36 m2 per dead tree. The density of the dead trees was higher in proximity to the Linville River, at higher elevations, and on northern and northwestern aspects. Spatial pattern of the dead trees was generally clustered at all spatial scales. We suggest that although the reduction in plant biomass resulting from herbivory within the landscapes is modest, impact of the clustered distribution of hemlock mortality, especially in the riparian zones, is noteworthy. Our analysis of the pattern of hemlock decline provides new means for projecting future impacts of HWA on the range of hemlock distribution in eastern North America.

Cite this paper

Kantola, T. , Lyytikäinen-Saarenmaa, P. , Coulson, R. , Strauch, S. , Tchakerian, M. , Holopainen, M. , Saarenmaa, H. and Streett, D. (2014) Spatial Distribution of Hemlock Woolly Adelgid Induced Hemlock Mortality in the Southern Appalachians. Open Journal of Forestry, 4, 492-506. doi: 10.4236/ojf.2014.45053.


[1] Aakala, T., Fraver, S., Palik, B. J., & D’Amato, A. W. (2012) Spatially Random Mortality in Old-Growth Red Pine Forests of Northern Minnesota. Canadian Journal of Forest Research, 42, 899-907.
[2] Aakala, T., Kuuluvainen, T., Grandpré, L. D., & Gauthier, S. (2006). Trees Dying Standing in the Northeastern Boreal Old-Growth Forests of Quebec: Spatial Patterns, Rates, and Temporal Variation. Canadian Journal of Forest research, 37, 50-61.
[3] Albani, M., Moorcroft, P. R., Ellison, A. M., Orwig, D. A., & Foster, D. R. (2010). Predicting the Impact of Hemlock Woolly Adelgid on Carbon Dynamics of Eastern United States forests. Canadian Journal of Forest Research, 40, 119-133.
[4] Aukema, J. E., Leung, B., Kovacs, K., Chivers, C., Britton, K. O., Englin, J. et al. (2011). Economic Impacts of Non-Native Forest Insects in the Continental United States. PLoS One, 6.
[5] Baddeley, A., & Turner, R. (2005) Spatstat: An R Package for Analyzing Spatial Point Patterns. Journal of Statistical Software, 12, 1-42.
[6] Bailey, T. C., & Gatrell, A. C. (1995). Interactive Spatial Data Analysis 413. Essex: Longman Scientific & Technical.
[7] Baltensweiler, W., Weber, U. M., & Cherubini, P. (2008). Tracing the Influence of Larch-Bud-Moth Insect Outbreaks and Weather Conditions on Larch Tree-Ring Growth in Engadine (Switzerland). Oikos, 117, 161-172.
[8] Birt, A. G., Zeng, Y., Tchakerian, M. D., Coulson, R. N., Lafon, D. M., Cairns, D. M. et al. (2014). Evaluating Southern Appalachians Forest Dynamics without Eastern Hemlock: Consequence of Herbivory by the Hemlock Woolly Adelgid. Open Journal of Forestry, 4, 91-98.
[9] Bonneau, L. R., Shields, K. S., & Civco, D. L. (1999). Using Satellite Images to Classify and Analyze the Health of Hemlock Forests Infested by the Hemlock Woolly Adelgid. Biological Invasions, 1, 255-267.
[10] Brown, K. (2004). Growth and Nutritional Responses of Western Hemlock to Fertilization: A Review. Journal of Ecosystems and Management, 3, 1-15.
[11] Buckland, S. T. (1984). Monte Carlo Confidence Intervals. Biometrics, 40, 811-817.
[12] Cheah, C., Montgomery, M. E., Salom, S., Parker, B. I., & Skinner, M. (2004). Biological Control of Hemlock Woolly Adelgid. Morgantown, WV: US Department of Agriculture, Forest Service, FHTET, 28.
[13] Ciesla, W. (2000). Remote Sensing in Forest Health Protection. Fort Collins, CO: USDA Forest Service Remote Sensing Applications Center Salt Lake City, UT and FHTET, 276.
[14] Clark, J. T., Fei, S., Liang, L., & Rieske, L. K. (2012). Mapping Eastern Hemlock: Comparing Classification Techniques to Evaluate Susceptibility of a Fragmented and Valued Resource to an Exotic Invader, the Hemlock Woolly Adelgid. Forest Ecology and Management, 266, 216-222.
[15] Cobb, R. C. (2010). Species Shift Drives Decomposition Rates Following Invasion by Hemlock Woolly Adelgid. Oikos, 119, 1291-1298.
[16] Coulson, R. N., & Tchakerian, M. D. (2010). Basic Landscape Ecology. Boston, MA: KEL Partners Incorporated, 300.
[17] Dale, M. R. (1999). Spatial Pattern Analysis in Plant Ecology. Ecology, 88, 366-370.
[18] Day, F. P., & Monk, C. D. (1974). Vegetation Patterns on a Southern Appalachian Watershed. Ecology, 55, 1064-1074.
[19] Del Tredici, P., & Kitajima, A. (2004). Introduction and Cultivation of Chinese Hemlock (Tsuga chinensis) and Its Resistance to Hemlock Woolly Adelgid (Adelges Tsugae). Journal of Arboriculture, 30, 282-287.
[20] Dix, M. E., Buford, M., Slavicek, J., Solomon, A. M., & Conrad, S. G. (2010). Invasive Species and Disturbances: Current and Future Roles of Forest Service Research and Development. In M. E. Dix, & K. O. Britton (Eds.), A Dynamic Invasive Species Research Vision: Opportunities and Priorities 2009-2029 (pp. 91-102). Washington DC: USDA Forest Service, Research and Development.
[21] Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N. et al. (2009). Responses of Insect Pests, Pathogens and Invasive Plant Species to Climate Change in the Forests of Northeastern North America: What Can We Predict? Canadian Journal of Forest Research, 39, 231-248.
[22] Elliott, K. J., Knoepp, J. D., Vose, J. M., & Jackson, W. A. (2013). Interacting Effects of Wildfire Severity and Liming on Nutrient Cycling in a Southern Appalachian Wilderness Area. Plant and Soil, 366, 165-183.
[23] Elliott, K. J., & Vose, J. M. (2011). The Contribution of the Coweeta Hydrologic Laboratory to Developing an Understanding of Long-Term (1934-2008) Changes in Managed and Unmanaged Forests. Forest Ecology and Management, 261, 900-910.
[24] Ellison, A. M., Bank, M. S., Clinton, B. D., Colburn, E. A., Elliott, K., Ford, C. R. et al. (2005). Loss of Foundation Species: Consequences for the Structure and Dynamics of Forested Ecosystems. Frontiers in Ecology and the Environment, 3, 479486.[0479:LOFSCF]2.0.CO;2
[25] Eschtruth, A. K., Cleavitt, N. L., Battles, J. J., Evans, R. A., & Fahey, T. J. (2006). Vegetation Dynamics in Declining Eastern Hemlock Stands: 9 Years of Forest Response to Hemlock Woolly Adelgid Infestation. Canadian Journal of Forest Research, 36, 1435-1450.
[26] Ford, C. R., & Vose, J. M. (2007). Tsuga canadensis (L.) Carr. Mortality Will Impact Hydrologic Processes in Southern Appalachian Forest Ecosystems. Ecological Applications, 17, 1156-1167.
[27] Ford, C. R., Elliot, K. J., Clinton, B. D., Kloeppel, B. D., & Vose, J. M. (2012). Forest Dynamics Following Eastern Hemlock Mortality in the Southern Appalachians. Oikos, 121, 523-536.
[28] Goreaud, F., & Pélissier, R. (2003). Avoiding Misinterpretation of Biotic Interactions with the Intertype K12-Function: Population Independence vs. Random Labeling Hypotheses. Journal of Vegetation Science, 14, 681-692.
[29] Haase, P. (1995). Spatial Pattern Analysis in Ecology Based on Ripley’s K-Function: Introduction and Methods of Edge Correction. Journal of Vegetation Science, 6, 575-582.
[30] Hall, R. J., Fernandes, R. A., Hogg, E. H., Brandt, J. P., Butson, C., Case, B. S., & Leblanc, S. G. (2003). Relating Aspen Defoliation to Changes in Leaf Area Derived from Field and Satellite Remote Sensing Data. Canadian Journal of Remote Sensing, 29, 299-313.
[31] Hall, R. J., Skakun, R. S., & Arsenault, E. J. (2007). Remotely Sensed Data in the Mapping of Insect Defoliation. In M. A. Wulder, & S. E. Franklin (Eds.), Understanding Forest Disturbance and Spatial Pattern. Remote Sensing and GIS Approaches (pp. 85-111). Boca Raton, FL: CRC Press, Taylor and Francis Group.
[32] Hodkinson, I. D. (2005). Terrestrial Insects along Elevation Gradients: Species and Community Responses to Altitude. Biological Reviews, 80, 489-513.
[33] Holmes, T. P., Aukema, J. E., Von Holle, B., Liebhold, A., & Sills, E. (2009). Economic Impacts of Invasive Species in Forests. Annals of the New York Academy of Sciences, 1162, 18-38.
[34] Jetton, R. M., Dvorak, W. S., & Whittier, W. A. (2008). Ecological and Genetic Factors That Define the Natural Distribution of Carolina Hemlock in the Southeastern United States and Their Role in ex Situ Conservation. Forest Ecology and Management, 255, 3212-3221.
[35] Jonas, S., Xi, W., Waldron, J., & Coulson, R. (2012). Ecological Considerations for Forest Restoration Following Hemlock Woolly Adelgid Outbreaks. Tree and Forestry Science and Biotechnology, 6, 22-26.
[36] Kelly, M., & Meentemeyer, R. K. (2002). Landscape Dynamics of the Spread of Sudden Oak Death. Photogrammetric Engineering and Remote Sensing, 68, 1001-1010.
[37] Kizlinski, M. L., Orwig, D. A., Cobb, R. C., & Foster, D. R. (2002). Direct and Indirect Ecosystem Consequences of an Invasive Pest on Forests Dominated by Eastern Hemlock. Journal of Biogeography, 29, 1489-1503.
[38] Knebel, L., & Wentworth, T. R. (2007). Influence of Fire and Southern Pine Beetle on Pine-Dominated Forests in the Linville Gorge Wilderness, North Carolina. Castanea, 72, 214-225.
[39] Koch, F. H., Cheshire, H. M., & Devine, H. A. (2006). Landscape-Scale Prediction of Hemlock Woolly Adelgid, Adelges Tsugae (Homoptera: Adelgidae), Infestation in the Southern Appalachian Mountains. Environmental Entomology, 35, 1313-1323.[1313:LPOHWA]2.0.CO;2
[40] Koch, F. H., Cheshire, H. M., & Devine, H. A. (2005). Mapping Hemlocks via Tree-Based Classification of Satellite Imagery and Environmental Data. Morgantown, WV: US Department of Agriculture, Forest Service, FHTET-2005-01, 11.
[41] Kong, N., Fei, S., Rieske-Kinney, L., & Obrichy, J. (2008). Mapping Hemlock Forest in Harlan County, Kentucky. In P. Bettinger, K. Merry, S. Fei, J. Drake, N. Nibbelink, & J. Hepinstall (Eds.), Proceedings of the 6th Southern Forestry and Natural Resources GIS Conference (pp. 107-117). Athens: Warnell School of Forestry and Natural Resources, University of Georgia.
[42] Krapfl, K. J., Holzmueller, E. J., & Jenkins, M. A. (2011). Early Impacts of Hemlock Woolly Adelgid in Tsuga Canadensis Forest Communities of the Southern Appalachian Mountains. Journal of the Torrey Botanical Society, 138, 93-106.
[43] Lesure, F. G. (1977). Mineral Resources of the Joyce Kilmer-Slickrock Wilderness, North Carolina-Tennessee. Washington DC: United States Government Printing Office, 89.
[44] Liu, D., Kelly, M., Gong, P., & Guo, Q. (2007). Characterizing Spatial-Temporal Tree Mortality Patterns Associated with a New Forest Disease. Forest Ecology and Management, 253, 220-231.
[45] Lynch, H. J., & Moorcroft, P. R. (2008). A Spatiotemporal Ripley’s K-Function to Analyze Interactions between Spruce Budworm and Fire in British Columbia, Canada. Canadian Journal of Forest Research, 38, 3112-3119.
[46] McClure, M. S. (1985). Patterns of Abundance, Survivorship and Fecundity of Nuculaspis Tsugae (Homoptera: Diapsididae) on Tsuga Species in Japan in Relation to Elevation. Environmental Entomology, 14, 413-415.
[47] McClure, M. S. (1991). Density-Dependent Feedback and Population Cycles in Adelges Tsugae (Homoptera: Adelgidae) on Tsugacanadensis. Environmental Entomology, 20, 258-264.
[48] Moore, C. C. (2008). Using Empirical Benefit Estimates in a Bioeconomic Model of Invasive Species Control. Ph.D. Dissertation, Raleigh, NC: Carolina State University.
[49] Morgan, J. L., Gergel, S. E., & Coops, N. C. (2010). Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience, 60, 47-59.
[50] Narayanaraj, G., Bolstad, P.V., Elliott, K. J., & Vose, J. M. (2010). Terrain and Landform Influence on Tsuga canadensis (L.) Carriere (Eastern Hemlock) Distribution in the Southern Appalachian Mountains. Castanea, 75, 1-18.
[51] Newell, C. L., & Peet, R. K. (1998). Vegetation of Linville Gorge Wilderness, North Carolina. Castanea, 63, 275-322.
[52] Niemela, P., Rousi, M., & Saarenmaa, H. (1987). Topographical Delimitation of Neodiprion sertifer (Hym., Diprionidae) Outbreaks on Scots Pine in Relation to Needle Quality. Journal of Applied Entomology, 103, 84-91.
[53] Nuckolls, A. E., Wurzburger, N., Ford, C. R., Hendrick, R. L., Vose, J. M., & Kloeppel, B. D. (2009). Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests. Ecosystems, 12, 179-190.
[54] Ohser, J. (1983). On Estimators for the Reduced Second Moment Measure of Point Processes. Series Statistics, 14, 63-71.
[55] Orwig, D. A., & Foster, D. R. (1998). Foster Forest Response to the Introduced Hemlock Woolly Adelgid in Southern New England, USA. Journal of Torrey Botanical Society, 125, 60-73.
[56] Orwig, D. A., Cobb, R. C., D’Amato, A. W., Kizlinski, M. L., & Foster, D. R. (2008). Multi-Year Ecosystem Response to Hemlock Woolly Adelgid Infestation in Southern New England Forests. Canadian Journal of Forest Research, 38, 834843.
[57] Orwig, D. A., Foster, D. R., & Mausel, D. L. (2002). Landscape Patterns of Hemlock Decline in New England Due to the Introduced Hemlock Woolly Adelgid. Journal of Biogeography, 29, 1475-1487.
[58] Orwig, D. A., Thompson, J. R., Povak, N. A., Manner, M., Niebyl, D., & Foster, D. R. (2012). A Foundation Tree at the Precipice: Tsuga canadensis Health after the Arrival of Adelges Tsugae in Central New England. Ecosphere, 3, art 10.
[59] Paradis, A., Elkinton, J., Hayhoe, K., & Buonaccorsi, J. (2008). Role of Winter Temperature and Climate Change on the Survival and Future Range Expansion of the Hemlock Woolly Adelgid (Adelges Tsugae) in Eastern North America. Mitigation and Adaptation Strategies for Global Change, 13, 541-554.
[60] Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the Environmental and Economic Costs Associated with AlienInvasive Species in the United States. Ecological Economics, 52, 273-288.
[61] Ripley, B. D. (1976). The Second-Order Analysis of Stationary Point Processes. Journal of Applied Probability, 13, 255-266.
[62] Ripley, B. D. (1977). Modeling Spatial Patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39, 172-212.
[63] Ripley, B. D. (1981). Spatial Statistics. New York: Wiley & Sons, 252.
[64] Rohr, J. R., Mahan, C. G., & Kim, K. C. (2009). Response of Arthropod Biodiversity to Foundation Species Declines: The Case of the Eastern Hemlock. Forest Ecology and Management, 258, 1503-1510.
[65] Ross, R. M., Bennett, R. M., Snyder, C. D., Young, J. A., Smith, D. R., & Lemarie, D. P. (2003). Influence of Eastern Hemlock (Tsuga canadensis L.) on Fish Community Structure and Function in Headwater Streams of the Delaware River Basin. Ecology of Freshwater Fish, 12, 60-65.
[66] Rouvinen, S., Kuuluvainen, T., & Karjalainen, L. (2002). Coarse Woody Debris in Old Pinus sylvestris Dominated Forests along a Geographic and Human Impact Gradient in Boreal Fennoscandia. Canadian Journal of Forest Research, 32, 21842200.
[67] Royle, D. D., & Lathrop, R. G. (1997). Monitoring Hemlock Forest Health in New Jersey Using Landsat TM Data and Change Detection Techniques. Forest Science, 43, 327-335.
[68] Royle, D. D., & Lathrop, R. G. (2002). Discriminating Tsugacanadensis Hemlock Forest Defoliation Using Remotely Sensed Change Detection. Journal of Nematology, 34, 213-221.
[69] Ruohomaki, K., Virtanen, T., Kaitaniemi, P., & Tammaru, T. (1997). Old Mountain Birches at High Altitudes Are Prone to Outbreaks of Epirrita autumnata (Lepidoptera: Geometridae). Environmental Entomology, 26, 1096-1104.
[70] Sackett, T. E., Record, S., Bewick, S., Baiser, B., Sanders, N. J., & Ellison, A. M. (2011). Response of Macroarthropod Assemblages to the Loss of Hemlock (Tsuga canadensis), a Foundation Species. Ecosphere, 2, art 74.
[71] Simon, S. A., Collins, T. K., Kauffman, G. L., McNab, W. H., & Ulrey, C. J. (2005). Ecological Zones in the Southern Appalachians: First Approximation. Research Paper SRS-41, Asheville, NC: USDA Forest Service, Southern Research Station, 41.
[72] Snyder, C. D., Young, J. A., Lemarié, D. P., & Smith, D. R. (2002). Influence of Eastern Hemlock (Tsuga canadensis) Forests on Aquatic Invertebrate Assemblages in Headwater Streams. Canadian Journal of Fisheries and Aquatic Sciences, 59, 262-275.
[73] Souto, D., Luther, T., Chianese, B., Salom, S. M., Tigner, T. C., & Reardon, R. C. (1996). Past and Current Status of HWA in Eastern and Carolina Hemlock Stands. In Proceedings of the First Hemlock Woolly Adelgid Review (pp. 9-15). Charlottesville, VA: FHTET, USDA Forest Service.
[74] Spaulding, H. L., & Rieske, L. K. (2010). The Aftermath of an Invasion: Structure and Composition of Central Appalachian Hemlock Forests Following Establishment of Hemlock Woolly Adelgid, Adelges Tsugae. Biological Invasions, 12, 31353143.
[75] Stadler, B., Müller, T., & Orwig, D. (2006). The Ecology of Energy and Nutrient Fluxes in Hemlock Forests Invaded by Hemlock Woolly Adelgid. Ecology, 87, 1792-1804.[1792:TEOEAN]2.0.CO;2
[76] Tenow, O. (1975). Topographical Dependence of the Outbreak of Oporinia autumnata Bkh. (Lep., Geometridae) in a Mountain Birch Forest in Northern Sweden. Zoon, 3, 85-110.
[77] The R Project for Statistical Computing (2013).
[78] Trotter III, R. T., Morin, R. S., Oswalt, S. N., & Liebhold, A. (2013). Changes in the Regional Abundance of Hemlock Associated with the Invasion of Hemlock Woolly Adelgid (Adelges Tsugae Annand). Biological Invasions, 15, 2667-2679.
[79] Ward, J. S., Montgomery, M. E. Cheah, C. J., Onken, B. P., & Cowles, R. S. (2004). Eastern Hemlock Forests: Guidelines to Minimize the Impacts of Hemlock Woolly Adelgid. Morgantown, WV: USDA Forest Service Northeastern Area State & Private Forestry, 1-27.
[80] Webster, C. R., Jenkins, M. A., & Jose, S. (2006). Woody Invaders and the Challenges They Pose to Forest Ecosystems in the Eastern United States. Journal of Forestry, 104, 366-374.
[81] Wiegand, T., & Moloney, K. (2004). Rings, Circles and Null-Models for Point Pattern Analysis in Ecology. Oikos, 104, 209229.
[82] Wimberly, M. C., & Reilly, M. J. (2007). Assessment of Fire Severity and Species Diversity in the Southern Appalachians Using Landsat TM and ETM+ Imagery. Remote Sensing of Environment, 108, 189-197.
[83] Wolf, A. (2005). Fifty Year Record of Change in Tree Spatial Patterns within a Mixed Deciduous Forest. Forest Ecology and Management, 215, 212-223.
[84] Wulder, M. A., Dymond, C. C., White, J. C., Leckie, D. G., & Carroll, A. L. (2006). Surveying Mountain Pine Beetle Damage of Forests: A Review of Remote Sensing Opportunities. Forest Ecology and Management, 221, 27-41.
[85] Xi, W. M., Waldron, J. D., Lafon, C. W., Cairns, D. M., Birt, A. G., Tchakerian, M. D., Coulson, R. N., & Klepzig, K. D. (2009). Modeling Long-Term Effects of Altered Fire Regimes Following Southern Pine Beetle Outbreaks (North Carolina). Ecological Restoration, 27, 24-26.
[86] Youngblood, A., Max, T., & Coe, K. (2004). Stand Structure in Eastside Old-Growth Ponderosa Pine Forests of Oregon and Northern California. Forest Ecology and Management, 199, 191-217.
[87] Zenner, E. K., & Hibbs, D. E. (2000). A New Method for Modeling the Heterogeneity of Forest Structure. Forest Ecology and Management, 129, 75-87.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.