Dielectric Relaxation in Pure Columbite Phase of SrNb2O6 Ceramic Material: Impedance Analysis
Karuna Nidhan Singh, Parmendra Kumar Bajpai
.
DOI: 10.4236/wjcmp.2011.12007   PDF    HTML     4,689 Downloads   11,074 Views   Citations

Abstract

Controlling the heating rate during calcination and cooling rate during sintering, pure columbite like phase of SrNb2O6 is synthesized. By optimizing the sintering temperature, ceramic with density (>92%) is achieved for material calcined at 11250C and sintered at 12000C. The ceramic shows orthorhombic structure with lattice parameters a = 11.011 Å b = 7.7136 Å, c = 5.5969Å having average grain size ≈ 1.03 μm. The temperature dependent dielectric response shows a peak at temperature 300.90C, which shows significant dielectric dispersion towards high temperature side of the peak with almost dispersion free low temperature side; an effect observed in relaxors. Dielectric dispersion in the material is fitted with the Jonscher’s relation. Impedance analysis suggests strongly temperature dependent relaxation. The dielectric relaxation is polydispersive and conduction is mainly through grains. The equivalent circuit model for the impedance response is proposed and the temperature dependence of circuit elements deduced. The frequency dependent ac conductivity at different temperatures indicated that the conduction is governed through thermally activated processes. AC conduction activation energies are estimated from Arrhenius plots and conduction mechanism is discussed.

Share and Cite:

K. Singh and P. Bajpai, "Dielectric Relaxation in Pure Columbite Phase of SrNb2O6 Ceramic Material: Impedance Analysis," World Journal of Condensed Matter Physics, Vol. 1 No. 2, 2011, pp. 37-48. doi: 10.4236/wjcmp.2011.12007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Brandt and A. Kemi, “X-Ray Studies on ABO4 Compound Rutile Type and AB2O6 Columbite Type,” Mineral. Geol., Vol. 17A, No. 15, 1943.
[2] H. J. Goldschmidt, “An X-Ray Inves-tigation of Systems between Niobium Pentaoxide and Certain Additional Oxides,” Metallurgia, Vol. 62, 1960, pp. 211-218.
[3] F. Laves, G. Bayer and A. Panagos, Schweiz Mineral Petrogr. Mitt., Vol. 43, 1963, p. 217.
[4] H. Brusset, R. Mahe and U. Aung Kyi, “Etude de niobates divalents binaires et ternaires a l'etat solide,” Materials Research Bulletin, Vol. 7, No. 10, 1972, pp. 1061- 1073. doi:10.1016/0025-5408(72)90158-4
[5] I. Yaeger, A. H. Morrish and B. M. Wanklyn, “Magnetization Studies in Transi-tion-Metal Niobates: I. NiNb2O6,” Physical Review B, Vol. 15, No. 3, 1977, pp. 1465-1476. doi:10.1103/PhysRevB.15.1465
[6] I. Yaeger, I. Maartense and B. M. Wanklyn, “Field-In- duced Magnetic Transitions of CoNb2O6 in the Ordered State,” Solid State Communications, Vol. 21, No. 1, 1977, pp. 93-96. doi:10.1016/0038-1098(77)91485-5
[7] I. Yaeger, A. H. Morrish, B. M. Wanklyn and B. J. Garrard, “Magnetization Studies in Transition-Metal Niobates. II. FeNb_ {2} O_ {6},” Physical Review B, Vol. 16, 1977, p. 2289. doi:10.1103/PhysRevB.16.2289
[8] K. N. Singh and P. K. Bajpai, “Synthesis, Characterization and Dielectric Relaxation of Phase Pure Columbite MgNb2O6: Optimization of Calcination and Sinterin,” Physica B, Vol. 405, No.1, January 2010, pp. 303-312.
[9] H. Brusset, M. Gillier-Pandraud and S. D. Vo-liotis, “Etude de systemes binaires et pseudo-binaires definis entre Nb2O5 et PbO, SrO, BaO,” Materials Research Bulletin, Vol. 6, 1971, p. 5.
[10] R. Roth, “Unit-cell Data of the Lead Niobate, PbNb2O6,”Acta Crystallographica, Vol. 10, No. 6, 1957, p. 437. doi:10.1107/S0365110X57001437
[11] H. J. Lee, K. S. Hong, S. J. Kim and I. T. Kim, “Effect of Vibro-Milling Time on Phase Formation and Particle Size of ZnNbO6 Na-no-Powders,” Materials Research Bulletin, Vol. 32, No. 7, 1997, pp. 847-855. doi:10.1016/S0025-5408(97)00034-2
[12] R. C. Pullar, J. D. Breeze and N. Alford, “Characterization and Microwave Di-electric Properties of M2+ Nb2O6 Ceramics,” Journal of the American Ceramic Society, Vol. 88, No. 9, 2005, pp. 2466-2471. doi:10.1111/j.1551-2916.2005.00458.x
[13] Y. C. Zhang, Z. X. Yue, Z. Gui and L. T. Li, Material Letters, Vol. 57, 2003, pp. 4531-4534.
[14] T. Kolodiazhnyi, A. Petric, A. Belous, O. V’yunov and O. Yanchevskij, “Synthesis and Dielectric Prop-erties of Barium Tantalates and Niobates with Complex Pe-rovskite Structure,” Journal of Materials Research, Vol. 17, No, 12, 2002, pp. 3182-3189. doi:10.1557/JMR.2002.0460
[15] A. Ananta, R. Brydson and N. W. Thomas, “Synthesis, Formation and Characterisation of MgNb2O6 Powder in a Columbite-Like Phase,” Journal of the European Ceramic Society, Vol. 19, No. 3, 1999, pp. 355-362. doi:10.1016/S0955-2219(98)00206-4
[16] N. Natarajan, V. Samuel, R. Pasricha, V. Ravi, “A Coprecipitation Technique to Prepare BaNb2O6,” Material Science & Engoneering B, Vol. 117, No. 2, March 2005, pp. 169-171. doi:10.1016/j.mseb.2004.11.009
[17] V. Ravi, “A Coprecipita-tion Technique to Prepare SrNb2O6,” Material Characterization, Vol. 55, No. 1, July 2005, pp. 92-95. doi:10.1016/j.matchar.2005.04.002
[18] K. S. Rao, P. M. Krishan, D. M. Prasad and J. H. Lee, “Influence of Samarium Substitution on Impedance Dielectric and Electromechanical Properties of Pb(1-x)K2xNb2O6,” International Journal of Modern Physics B, Vol. 21, No. 6, 2007, pp. 931-945. doi:10.1142/S0217979207036795
[19] K. S. Rao, D. M. Pra-sad, P. M. Krishna, B. H. Bindu and K. Suneetha, “Correlation between Low Frequency Dielectric Dispersion (LFDD) and Impedance Relaxation in Ferroelectric Ceramic Pb2KNb4TaO15,” The Journal of Materials Science, Vol. 42, 2007, p. 7363.
[20] L. Zhigao, J. P. Bonnet, J. Ravez and P. Hagen-muller, “Correlation between Low Frequency Dielectric Dis-persion (LFDD) and Impedance Relaxation in Ferroelectric Ceramic Pb2KNb4TaO15,” Solid State Ionics, Vol. 57, No. 3-4, October 1992, pp. 235-244. doi:10.1016/0167-2738(92)90153-G
[21] T. A. Nealon, “Low-Frequency Dielectric Responses in PMN-Type Ceramics,” Ferroelectrics, Vol. 76, 1987, pp. 371-382. doi:10.1080/00150198708016958
[22] A. K. Janscher, “The 'universal'dielectric response,” Nature, Vol. 267, 1977, pp. 673-679. doi:10.1038/267673a0
[23] F. A. Kroger and H. J. Vink, “Relations between the Concentrations of Imperfections in Crystalline Solids,” Solid State Physics, Vol. 3, 1956, pp. 307-435. doi:10.1016/S0081-1947(08)60135-6
[24] D. R. Chen and Y. G. Yen, Electro. Elementary Math, Vol. 1, 1982, p. 25.
[25] A. R. West, D. C. Sinclair, N. Hirose, “Characterization of Electrical Materials, Especially Ferroelectrics, by Impedance Spectroscopy,” The Journal of Electroceramics. Vol. 1, No.1, 1975, pp. 65-71. doi:10.1023/A:1009950415758
[26] J. Ross Macdonald, “Im-pedance Spectroscopy: Emphasizing Solid Materials and Sys-tems,” Wiley Intersicence Publications, 1987.
[27] J. Maier, “The Polarization of Mixed Conducting SOFC Cathodes: Effects of Surface Reaction Coefficient, Ionic Conductivity and Geometry,” The Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1343- 1347.
[28] J. Maier, Solid State Ionics, Vol. 157, 2003, p. 327.
[29] A. K. Jonscher, “The 'universal'dielectric response,” Nature, Vol. 267, 1977, pp. 673-679.
[30] D. C. Sinclair and A. R. West, “Impedance and Modulus Spectroscopy of Semiconducting BaTiO3 Showing Positive Temperature Coefficient of Resistance,” Journal of Applied Physics, Vol. 66, No. 8, 1989, pp. 3850-3857. doi:10.1063/1.344049
[31] I. M. Hodge, M. D. Ingram and Q. A. R. West, “Impedance and Modulus Spectroscopy of Poly-crystalline Solid Electrolytes,” Journal of Electroanalytical Chemistry, Vol. 74, No. 2, 1976, pp. 125-143. doi:10.1016/S0022-0728(76)80229-X
[32] A.K. Jonscher, “A New Understanding of the Dielectric Relaxation of Solids,” Journal of Materials Science, Vol. 16, No. 8, 1981, pp. 2037-2060. doi:10.1007/BF00542364

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.