Rapid Biodiesel Fuel Production Using Novel Fibrous Catalyst Synthesized by Radiation-Induced Graft Polymerization
Yuji Ueki, Nor Hasimah Mohamed, Noriaki Seko, Masao Tamada
.
DOI: 10.4236/ijoc.2011.12004   PDF    HTML     5,832 Downloads   12,492 Views   Citations

Abstract

An efficient fibrous catalyst for the biodiesel fuel production has been synthesized by radiation-induced graft polymerization of 4-chloromethylstyrene onto a nonwoven polyethylene (NWPE) fabric followed by amination with trimethylamine (TMA) and further treatment with NaOH. The degree of grafting of NWPE fabric and TMA group density of fibrous catalyst could easily and reproducibly be controlled within a range of up to 340% and 3.6 mmol-TMA/g-catalyst, respectively. In the transesterification of triglycerides and ethanol using the synthesized fibrous catalyst, the conversion ratio of triglycerides reached 95% after 4 h reaction at 50°C.

Share and Cite:

Y. Ueki, N. Mohamed, N. Seko and M. Tamada, "Rapid Biodiesel Fuel Production Using Novel Fibrous Catalyst Synthesized by Radiation-Induced Graft Polymerization," International Journal of Organic Chemistry, Vol. 1 No. 2, 2011, pp. 20-25. doi: 10.4236/ijoc.2011.12004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] B. Freedman, E. H. Pryde and T. L. Mounts, “Variables affecting the yields of fatty esters from transesterified vegetable oils”, J. Am. Oil Chem. Soc., Vol. 61, No. 10, 1984, 1638-1643.
[2] M. D. Serio, R. Tesser, M. Dimiccoli, F. Cammarota, M. Nastasi and E. Santacesaria, “Synthesis of biodiesel via homogeneous Lewis acid catalyst”, J. Mol. Catal. A: Chem., Vol. 239, No. 1-2, 2005, 111-115.
[3] G. Guan, K. Kusakabe, N. Sakurai and K. Moriyama, “Transesterification of vegetable oil to biodiesel fuel using acid catalysts in the presence of dimethyl ether”, Fuel, Vol. 88, No. 1, 2009, 81-86.
[4] F. R. Ma and M. A. Hanna, “Biodiesel production: a review”, Bioresour. Technol., Vol. 70, No. 1, 1999, 1-15.
[5] D. E. López, J. G. Goodwin Jr., D. A. Bruce and E. Lotero, “Transesterification of triacetin with methanol on solid acid and base catalysts”, Appl. Catal., A, Vol. 295, No. 2, 2005, 97–105.
[6] J. M. Dias, M. C. M. Alvim-Ferraz and M. F. Almeida, “Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality”, Fuel, Vol. 87, No. 17-18, 2008, 3572-3578.
[7] M. Mittelbach, “Lipase catalyzed alcoholysis of sunflower oil”, J. Am. Oil Chem. Soc., Vol. 67, No. 3, 1990, 168-170.
[8] A. Bajaj, P. Lohan, P. N. Jha and R. Mehrotra, “Biodiesel production through lipase catalyzed transesterification: An overview”, J. Mol. Catal. B: Enzym., Vol. 62, No. 1, 2010, 9-14.
[9] O. S. Stamenkovi?, V. B. Veljkovi?, Z. B. Todorovi?, M. L. Lazi?, I. B. Bankovi?-Ili? and D. U. Skala, “Modeling the kinetics of calcium hydroxide catalyzed methanolysis of sunflower oil”, Bioresour. Technol., Vol. 101, No. 12, 2010, 4423-4430.
[10] [Z. Wen, X. Yu, S.-T. Tu, J. Yan and E. Dahlquist, “Synthesis of biodiesel from vegetable oil with methanol catalyzed by Li-doped magnesium oxide catalysts”, Appl. Energy, Vol. 87, No. 3, 2010, 743-748.
[11] S. Saka and D. Kusdiana, “Biodiesel fuel from rapeseed oil as prepared in supercritical methanol”, Fuel, Vol. 80, No. 2, 2001, 225-231.
[12] D. Kusdiana and S. Saka, “Two-step preparation for catalyst-free biodiesel fuel production. Hydrolysis and methyl esterification”, Appl. Biochem. Biotechnol., Vol. 115, No. 1–3, 2004, 781-791.
[13] S. Saka, Y. Isayama, Z. Ilham and X. Jiayu, “New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol”, Fuel, Vol. 89, No. 7, 2010, 1442-1446.
[14] T. Yonemoto, N. Kitakawa and T. Toda, “Method for producing fatty acid ester”, Jpn. Kokai Tokkyo Koho 2006-104316, 2006.
[15] N. Shibasaki-Kitakawa, H. Honda, H. Kuribayashi, T. Toda, T. Fukumura and T. Yonemoto, “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresour. Technol., Vol. 98, No. 2, 2007, 416-421.
[16] A. Sekine, N. Seko, M. Tamada and Y. Suzuki, “Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric”, Radiat. Phys. Chem., Vol. 79, No. 1, 2010, 16-21.
[17] T. Takeda, M. Tamada, N. Seko and Y. Ueki, “Ion exchange fabric synthesized by graft polymerization and its application to ultra-pure water production”, Radiat. Phys. Chem., Vol. 79, No. 3, 2010, 223-226.
[18] L. D. C. Nayanajith, Y. Ueki, N. Seko, H. Hoshina and M. Tamada, “Aminated adsorbent synthesized by radiation-induced graft polymerization of 4-chloromethylstyrene onto nonwoven polylactic acid fabric and its adsorption capacity for metal ions”, J. Ion Exchange, Vol. 21, No. 3, 2010, 123-126.
[19] B.-B. Jang, K.-P. Lee, D.-H. Min and J. Suh, “Immobile Artificial Metalloproteinase Containing Both Catalytic and Binding Groups”, J. Am. Chem. Soc., Vol. 120, No. 46, 1998, 12008-12016.
[20] D. W. Jenkins and S. M. Hudson, “Heterogeneous Graft Copolymerization of Chitosan Powder with Methyl Acrylate Using Trichloroacetyl?Manganese Carbonyl Co-initiation”, Macromolecules, Vol. 35, No. 9, 2002, 3413-3419.
[21] D. Portehault, C. Giordano, C. Sanchez and M. Antonietti, “Nonaqueous Route toward a Nanostructured Hybrid Titanate”, Chem. Mater., Vol. 22, No. 6, 2010, 2125-2131.
[22] K. W. Hipps and U. Mazur, “Vibrational and Low-Lying Electronic Transitions in Tetraalkylammonium Salts of CoBr42-, CoCl42-, and Co(CNS)42- as observed by Raman, Infrared, and Tunneling Spectroscopies”, J. Phys. Chem., Vol. 91, No. 20, 1987, 5218-5224.
[23] M.-I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J. P. Buisson, A. Monkman and S. Lefrant, “Vibrational Analysis of Polyaniline: A Model Compound Approach”, J. Phys. Chem. B, Vol. 102, No. 38, 1998, 7382-7392.
[24] M. Hol?apek, P. Jandera, J. Fischer and B. Proke?, “Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods”, J. Chromatogr. A, Vol. 858, No. 1, 1999, 13-31.
[25] Z. Tang, Z. Du, E. Min, L. Gao, T. Jiang and B. Han, “Phase equilibria of methanol–triolein system at elevated temperature and pressure”, Fluid Phase Equilib., Vol. 239, No. 1, 2006, 8-11.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.