Share This Article:

La2O3 Catalyzed Oxidation of Alcohols

Full-Text HTML Download Download as PDF (Size:198KB) PP. 41-46
DOI: 10.4236/ijoc.2011.12008    5,931 Downloads   11,922 Views   Citations

ABSTRACT

A variety of aromatic, aliphatic and conjugated alcohols were transformed to the corresponding carboxylic acids and ketones with a quantitative conversion in high yields with 70% t-BuOOH solution is water in the presence of catalytic amounts of La2O3. This method possesses a wide range of capabilities since it can be used with other functional groups which may not tolerate oxidative conditions, involves fairly simple method for work-up, exhibits chemoselectivity and proceeds under ambient conditions. The resulting products are obtained in good yields within reasonable time.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Gowda and D. Chakraborty, "La2O3 Catalyzed Oxidation of Alcohols," International Journal of Organic Chemistry, Vol. 1 No. 2, 2011, pp. 41-46. doi: 10.4236/ijoc.2011.12008.

References

[1] G. J. Hollingworth, “In Comprehensive Organic Functional Group Transformations,” A. R. Katritzky, O. Meth-Cohn, C. W. Rees and G. Pattenden Eds.; Elsevier Science: Oxford, 1995, Vol. 5, 23.
[2] M. Hudlicky, “In Oxidations in Organic Chemistry,” ACS Monograph Series 186; American Chemical Society: Washington DC, 1990, 174.
[3] R. C. Larock, “In Comprehensive Organic Transformations: a Guide to Functional Group Preparations,” 2nd edn., Wiley-VCH, New York, 1999, 1653.
[4] M. B. Smith and J. March, “Advanced Organic Chemistry: Reactions, Mechanisms, and Structure,” 5th edn., Wiley-Interscience, New York 2001.
[5] R. A. Sheldon and H. Van Bekkum, “Fine Chemicals through Heterogeneous Catalysis,” Wiley-VCH Verlag GmbH & Co., Weinheim, 2001.
[6] K. Bowden, I.M. Heilbron, E. R. H. Jones and B. C. L. Weedon, “Acetylenic compounds. I. Preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols,” J. Chem. Soc. 1946, pp. 39-45.
[7] I. Heilbron, E. R. H. Jones and F. Sondheimer, “Acetylenic compounds. XV. The oxidation of primary acetylenic carbinols and glycols,” J. Chem. Soc. 1949, pp. 604-607.
[8] P. Bladon, J. M. Fabian, H. B. Henbest, H. P. Koch and G. W. Wood, “Sterol group. LII. Infrared absorption of nuclear tri- and tetrasubstituted ethylenic centers,” J. Chem. Soc. 1951, pp. 2402-2411.
[9] R. G. Curtis, I. Heilbron, E. R. H. Jones and G. F. Woods, “The chemistry of the triterpenes. XIII. Further characterization of polyporenic acid A,” J. Chem. Soc. 1953, pp. 457-464.
[10] A. Bowers, T. G. Halsall, E. R. H. Jones and A. J. Lemin, “Chemistry of the triterpenes and related compounds. XVIII. Elucidation of the structure of polyporenic acid C,” J. Chem. Soc. 1953, pp. 2548-2560.
[11] C. Djerassi, R. R. Engle and A. Bowers, “Direct conversion of steroidal Δ5-3β-alcohols to Δ5- and Δ4-3-ketones,” J. Org. Chem., Vol. 21, 1956, pp. 1547-1549.
[12] G. Cainelli and G. Cardillo, “Chromium Oxidations in Organic Chemistry,” Springer: Berlin, 1984.
[13] R. T. Benjamin, M. Sivakumar, G. O. Hollist and B. Borhan, “Facile oxidation of aldehydes to acids and esters with Oxone,” Org. Lett., Vol. 5, 2003, pp. 1031-1034.
[14] S. O. Nwaukwa and P. M. Keehn, “The oxidation of aldehydes to acids with calcium hypochlorite [Ca(OCl)2],” Tetrahedron Lett., Vol. 23, 1982, pp. 3131-3134.
[15] B. Ganem, R. P. Heggs, A. J. Biloski and D. R. Schwartz, “A new oxidation of aldehydes to carboxylic acids,” Tetrahedron Lett., Vol. 21, 1980, pp. 685-688.
[16] T. Yamada, O. Rhode, T. Takai and T. Mukaiyama, “Oxidation of aldehydes into carboxylic acids with molecular oxygen using nickel(II) complex catalyst,” Chem Lett., 1991, pp. 5-8.
[17] B. Bhatia, T. Punniyamurthy and J. Iqbal, “Cobalt(II)-catalyzed reaction of aldehydes with acetic anhydride under an oxygen atmosphere: scope and mechanism,” J. Org. Chem., Vol. 58, 1993, pp. 5518-5523.
[18] H. Heaney, “Novel organic peroxygen reagents for use in organic synthesis,” Top. Curr. Chem., Vol. 164, 1993, pp. 1-19.
[19] A. N. Kharata, P. Pendleton, A. Badalyan, M. Abedini and M. M. Amini, “Oxidation of aldehydes using silica-supported Co(II)-substituted heteropoly acid,” J. Mol. Catal. A: Chem., Vol. 175, 2001, pp. 277-283.
[20] S. Biella, L. Prati and M. Rossi, “Gold catalyzed oxidation of aldehydes in the liquid phase,” J. Mol. Catal. A: Chem., Vol. 197, 2003, pp. 207-212.
[21] J. M. Grill, J. W. Ogle and S. A. Miller, “An efficient and practical system for the catalytic oxidation of alcohols, aldehydes, and alpha,beta-unsaturated carboxylic acids,” J. Org. Chem., Vol. 71, 2006, pp. 9291-9296.
[22] J. K. Joseph, S. L. Jain and J. B. Sain, “Novel transition metal free oxidation of aromatic aldehydes to carboxylic acids using N-methylpyrrolidin-2-one hydrotribromide (MPHT) as catalyst and hydrogen peroxide as oxidant,” Catal Commun., Vol. 8, 2007, pp. 83-87.
[23] M. Lim, C. M. Yoon, G. An and H. Rhee, “Environmentally benign oxidation reaction of aldehydes to their corresponding carboxylic acids using Pd/C with NaBH4 and KOH,” Tetrahedron Lett., Vol. 48, 2007, pp. 3835-3839.
[24] X. T. Zhou, H. B. Ji, Q. L. Yuan, J. C. Xu, L. X. Pei and L. F. Wang, “Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (III) meso-tetraphenylporphyrin chloride under ambient conditions,” Chinese Chem. Lett., Vol. 18, 2007, pp. 926-928.
[25] D. Sloboda-Rozner, K. Neimann and R. Neumann, “Aerobic oxidation of aldehydes catalyzed by ε-Keggin type polyoxometalates [Mo12VO39(μ2-OH)10H2{XII(H2O)3}4] (X=Ni, Co, Mn and Cu) as heterogeneous catalysts,” J. Mol. Catal. A: Chem., Vol. 262, 2007, pp. 109-113.
[26] C. Mukhopadhyay and A. Datta, “Bismuth(III) nitrate pentahydrate: a stoichiometric reagent for microwave induced mild and highly efficient aerial oxidation of aromatic aldehydes under solvent-free conditions,” Catal Commun., Vol. 9, 2008, pp. 2588-2592.
[27] M. Uyanik and K. Ishihara, “Hypervalent iodine-mediated oxidation of alcohols,” Chem. Commun., 2009, pp. 2086-2099.
[28] N. A. Noureldin and D. G. Lee, “Heterogeneous Permanganate Oxidations. 2. Oxidation of Alcohols Using Solid Hydrated Copper Permanganate,” J. Org. Chem., Vol. 47, 1982, pp. 2790-2792.
[29] S. I. Murahashi, T. Naota and N. Hirai, “Aerobic Oxidation of Alcohols with Ruthenium-Cobalt Bimetallic Catalyst in the Presence of Aldehydes,” J. Org. Chem., Vol. 58, 1993, pp. 7318-7319.
[30] K. Sato, M. Aoki, J. Takagi and R. Noyori, “Organic Solvent- and Halide-Free Oxidation of Alcohols with Aqueous Hydrogen Peroxide,” J. Am. Chem. Soc., Vol. 119, 1997, pp. 12386-12387.
[31] K. Sato, J. Takagi, M. Aoki and R. Noyori, “Hydrogen Peroxide Oxidation of Benzylic Alcohols to Benzaldehydes and Benzoic Acids Under Halide-Free Conditions,” Tetrahedron Lett., Vol. 39, 1998, pp. 7549-7552.
[32] B. Betzemeier, M. Cavazzini, S. Quici and P. Knochel, “Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions,” Tetrahedron Lett., Vol. 41, 2000, pp. 4343-4346.
[33] H. Ji, T. Mizugaki, K. Ebitani and K. Kaneda, “Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst,” Tetrahedron Lett., Vol. 43, 2002, pp. 7179-7183.
[34] B. A. Steinhoff and S. S. Stahl, “Ligand-Modulated Palladium Oxidation Catalysis: Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2/Pyridine Catalyst System,” Org. Lett., Vol. 4, 2002, pp. 4179-4181.
[35] G. J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, “Catalytic Conversions in Water. Part 21: Mechanistic Investigations on the Palladium-Catalysed Aerobic Oxidation of Alcohols in Water,” Adv. Synth. Catal., Vol. 344, 2002, pp. 355-369.
[36] Y. Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura, T. Kawamura and S. Uemura, “Oxovanadium Complex-Catalyzed Aerobic Oxidation of Propargylic Alcohols,” J. Org. Chem. Vol. 67, 2002, pp. 6718-6724.
[37] K. Yamaguchi and N. Mizuno, “Scope, Kinetics, and Mechanistic Aspects of Aerobic Oxidations Catalyzed by Ruthenium Supported on Alumina,” Chem. Eur. J., Vol. 9, 2003, pp. 4353-4361.
[38] V. B. Sharma, S. L. Jain and B. Sain, “Cobalt phthalocyanine catalyzed aerobic oxidation of secondary alcohols: an efficient and simple synthesis of ketones,” Tetrahedron Lett., Vol. 44, 2003, pp. 383-386.
[39] K. Jeyakumar and D. K. Chand, “Aerobic oxidation of benzyl alcohols by MoVI compounds,” Appl. Organometal. Chem. Vol. 20, 2006, pp. 840-844.
[40] T. Miyazawa, T. Endo, S. Shiihashi and M. Okawara, “Selective Oxidation of Alcohols by Oxoaminium Salts (R2N=O+X-),” J. Org. Chem. Vol. 50, 1985, pp. 1332-1334.
[41] P. L. Anelli, C. Biffi, F. Montanari and S. Quici, “Fast and Selective Oxidation of Primary Alcohols to Aldehydes or to Carboxylic Acids and of Secondary Alcohols to Ketones Mediated by Oxoammonium Salts under Two-Phase Conditions,” J. Org. Chem., Vol. 52, 1987, pp. 2559-2562.
[42] A. E. J. De Nooy, A. C. Besemer and H. van Bekkum, “On the Use of Stable Organic Nitroxyl Radicals for the Oxidation of Primary and Secondary Alcohols.” Synthesis, 1996, pp. 1153-1176.
[43] S. D. Rychnovsky and R. Vaidyanathan, “TEMPO-Catalyzed Oxidations of Alcohols Using m-CPBA: The Role of Halide Ions,” J. Org. Chem., Vol. 64, 1999, pp. 310-312.
[44] M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J. Grabowski and P. J. Reider, “Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach,” J. Org. Chem., Vol. 64, 1999, pp. 2564-2566.
[45] Y. Tashino and H. Togo, “TEMPO-Mediated Environmentally Benign Oxidation of Primary Alcohols to Carboxylic Acids with Poly[4-(diacetoxyiodo)styrene],” Synlett, 2004, pp. 2010-2012.
[46] M. Zhao, J. Li, E. Mano, Z. J. Song and D. M. Tschaen, “Oxidation of Primary alcohols to Carboxylic acids with Sodium chlorite Catalyzed by TEMPO and Bleach: 4-methoxyphenylacetic acid,” Org. Synth., Vol. 81, 2005, pp. 195-203.
[47] D. Chakraborty, R. R. Gowda and P. Malik, “Silver nitrate-catalyzed oxidation of aldehydes to carboxylic acids by H2O2,” Tetrahedron Lett., Vol. 50, 2009, 6553-6556.
[48] R. V. Stevens, K. T. Chapman, C. A. Stubbs, W. W. Tam and K. F. Albizati, “Further studies on the utility of sodium hypochlorite in organic synthesis. Selective oxidation of diols and direct conversion of aldehydes to esters,” Tetrahedron Lett., Vol. 23, 1982, pp. 4647-4650.
[49] S. R. Wilson, S. Tofigh and R. N. Misra, “A novel, nonoxidative method for the conversion of aldehydes to esters,” J. Org. Chem., Vol. 47, 1982, pp. 1360-1361.
[50] B. S. Bal, W. E. Childers Jr and H. W. Pinnick, “Oxidation of ?,β-unsaturated aldehydes,” Tetrahedron., Vol. 37, 1981, pp. 2091-2096.
[51] E. Dalcanale and F. Montanari, “Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide,” J. Org. Chem., Vol. 51, 1986, pp. 567-569.
[52] T. Ogawa and M. Matsui, “A novel oxidative transformation: oxidative esterification,” J. Am. Chem. Soc., Vol. 98, 1976, pp. 1629-1630.
[53] Y. ?F. Cheung, “N-Bromosuccinimide: direct oxidation of aldehydes to acid bromides,” Tetrahedron Lett., Vol. 40, 1979, pp. 3809-3810.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.