AHS> Vol.3 No.3, June 2014

Einstein’s 1905 “Revolutionary” Paper on Quanta as a Manifest and Detailed Example of a “Principle Theory”

DownloadDownload as PDF (Size:554KB)  HTML    PP. 130-154  

ABSTRACT

In the last times some scholars tried to characterize Einstein’s distinction between “constructive” —i.e. deductive-theories—and “principle” theories, the latter ones being preferred by Einstein. Here this distinction is qualified by an accurate inspection on past physical theories. Some previous theories are surely non-deductive theories. By a mutual comparison of them a set of features—mainly the arguing according to non-classical logic—are extracted. They manifest a new ideal model of organising a theory. Einstein’s paper of 1905 on quanta, qualified by him as presenting a “principle theory”, is interpreted according to this model of theory. Some unprecedented characteristic features are manifested. At the beginning of the same paper Einstein declared one more dichotomy about the kind of mathematics in theoretical physics. These two dichotomies are recognized to constitute the foundations of theoretical physics. With respect to these dichotomies the choices by Einstein in the paper on quanta are the alternative choices to Newton’s ones. This fact gives reason to the “revolutionary” nature that Einstein attributed to his paper.

Cite this paper

Drago, A. (2014) Einstein’s 1905 “Revolutionary” Paper on Quanta as a Manifest and Detailed Example of a “Principle Theory”. Advances in Historical Studies, 3, 130-154. doi: 10.4236/ahs.2014.33013.

References

[1] Aristotle (350 B.C.). Topics.
[2] Arons, A. B., & Peppard, M. B. (1965). Einstein’s Proposal of the Photon Concept—A Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33, 367-374.
http://dx.doi.org/10.1119/1.1971542
[3] Avogadro, A. (1811). Essai d’une manière de déterminer les masses relatives des molecules élémentaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons. Journal de Physique, Chimie et Histoire Naturelle, 58-76.
[4] Bellini, E., Drago, A., & Mauriello, G. (2007). Ricostruzione della meccanica di Lazare Carnot come alternativa fondazionale alla meccanica newtoniana. In M. Leone, B. Preziosi, & N. Robotti (Eds.), L’eredità di Fermi, Majorana ed altri temi. Atti del XXIV Congresso della Società Italiana della Storia della Fisica e dell’Astronomia (pp. 113-118). Napoli: Bibliopolis.
[5] Beth, E. W. (1950). Fundamental Features of Contemporary Theory of Science. British Journal for the Philosophy of Science, 1, 89-102.
[6] Beth, E. W. (1959). Foundations of Mathematics. New York: Harper.
[7] Bishop, E. (1967). Foundations of Constructive Mathematics (pp. 1-10). New York: McGraw-Hill. (Manifesto, in Idem)
[8] Birkhoff, G., & von Neumann, J. (1936). The Logic of Quantum Mechanics. The Annals of Mathematics, 37, 823-843. http://dx.doi.org/10.2307/1968621
[9] Boltzmann, L. (1874). Theoretical Physics and Philosophical Problems. Boston, MA: Reidel.
[10] Boorse, H. A., & Motz, L. (Eds.) (1966). The World of the Atom. New York: Basic Book.
[11] Brouwer, L. E. J. (1908). The Unreliability of the Logical Principles. In A. Heyting (Ed.), Collected Works (pp. 107-111). Amsterdam: North-Holland.
[12] Brown, J. (2005). Physical Relativity. Space-Time Structure from a Dynamical Perspective. Oxford: Oxford U.P.
[13] Brush, S. (1983). Statistical Physics and the Atomic Theory from Boyle and Newton to Landau and Onsager. Princeton, NJ: Princeton U.P.
[14] Bub, J. (2005). Quantum Mechanics Is about Quantum Information. Foundations of Physics, 35, 541-560. http://dx.doi.org/10.1007/s10701-004-2010-x
[15] Cambiano, G. (1967). Il metodo ipotetico e le origini della sistemazione euclidea della geometria. Rivista di Filosofia, 58, 115-149.
[16] Capecchi, D., & Drago, A. (2005). On Lagrange’s History of Mechanics. Meccanica, 40, 19-33. http://dx.doi.org/10.1007/s11012-004-2198-z
[17] Carnot, L. (1783). Essai sur le Machines en Général. Dijon: Defay.
[18] Carnot, L. (1803a). Principes fondamentaux de l’équilibre et du mouvement. Paris: Deterville.
[19] Carnot, L. (1803b). Géométrie de Position. Paris: Duprat.
[20] Carnot, L. (1813). Réflexions sur la métaphysique du calcul infinitésimal. Paris: Courcier.
[21] Carnot, S. (1978). Réflexions sur la puissance motrice du feu (1824). Edition critique par Fox, Robert. Paris: Vrin.
[22] Clifton, R., Bub, J., & Halvorson, H. (2003). Characterising Quantum Thoery in Terms of Information Theoretic Constraints. Foundations of Physics, 33, 1561-1591.
http://dx.doi.org/10.1023/A:1026056716397
[23] Coppola, A., & Drago, A. (1984). Galilei ha inventato il princìpio d’inerzia. Proposta di una nuova interpretazione della sua opera. In S. D’Agostino, & S. Petruccioli (Eds.), Atti V Congresso Nazionale di Storia della Fisica (pp. 319-327). Roma: Accademia dei XL.
[24] D’Alembert, J. le R. (1754). Elémens. In J. le R. D’Alembert, & D. Diderot (Eds.), Encyclopédie Française (Vol. 17, p. 501). A Livourne: de l’Imprimerie des éditeurs.
[25] Di Matteo, A. L., & Drago, A. (2006). La nascita della relatività ristretta. Poincaré non ha preceduto Einstein. Atti della Fondazione Giorgio Ronchi, 61, 97-113.
[26] Di Matteo, A. L., & Drago, A. (2007). La nascita della relatività è da attribuire ad Einstein, non a Poincaré. In M. Leone, B. Preziosi, & N. Robotti (Eds.), L’eredità di Fermi, Majorana ed altri temi. Atti del XXIV Congresso della Società Italiana della Storia della Fisica e dell’Astronomia (pp. 155-159). Napoli: Bibliopolis.
[27] Dorling, J. (1971). Einstein’s Introduction to Photons: Argument by Analogy or Deduction from Phenomena? British Journal for the Philosophy of Science, 22, 1-8.
http://dx.doi.org/10.1093/bjps/22.1.1
[28] Drago, A. (1986). Relevance of Constructive Mathematics to Theoretical Physics. In E. Agazzi et al. (Eds.), Logica e Filosofia della Scienza, oggi (Vol. II, pp. 267-272). Bologna: CLUEB.
[29] Drago, A. (1990). I quattro modelli della realtà fisica. Epistemologia, 13, 303-324.
[30] Drago, A. (1991a). Alle origini della meccanica quantistica: Le sue opzioni fondamentali. In G. Cattaneo, & A. Rossi (Eds.), I fondamenti della meccanica quantistica. Analisi storica e problemi aperti (pp. 59-79). Cosenza: Editel.
[31] Drago, A. (1991b). Le due opzioni. Molfetta, BA: La Meridiana.
[32] Drago, A. (1991c). The Alternative Content of Thermodynamics: Constructive Mathematics and Problematic Organization of the Theory. In K. Martinas, L. Ropolyi, & P. Szegedi (Eds.), Thermodynamics: History and Philosophy. Facts, Trend, Debates (pp. 329-345). Singapore: World Scientific.
[33] Drago, A. (1994). The Modern Fulfillment of Leibniz’ Program for a Scientia generalis. In H. Breger (Ed.), VI Internationale Kongres: Leibniz und Europa (pp. 185-195). Hannover, and also in (1994). Leibniz’s Scientia Generalis Reinterpreted and Accomplished by Means of Modern Scientific Theories. In C. Cellucci et al. (Eds.), Logica e Filosofia della Scienza. Problemi e Prospettive (pp. 35-54). Pisa: ETS.
[34] Drago, A. (2002). The Introduction to Non-Euclidean Geometries by Bolyai through an Arguing of Non-Classical Logic. Communication to International Conference on Bolyai 2002, Budapest.
[35] Drago, A. (2004). A New Appraisal of Old Formulations of Mechanics. American Journal of Physics, 72, 407-409. http://dx.doi.org/10.1119/1.1625924
[36] Drago, A. (2005). A.N. Kolmogoroff and the Relevance of the Double Negation Law in Science. In G. Sica (Ed.), Essays on the Foundations of Mathematics and Logic (pp. 57-81). Milano: Polimetrica.
[37] Drago, A. (2007). There Exist Two Models of Organization of a Scientific Theory. Atti della Fondazione Giorgio Ronchi, 62, 839-856.
[38] Drago, A. (2009). The Lagrange’s Arguing in Méchanique Analytique. In G. Sacchi Landriani, & A. Giorgilli (Eds.), Sfogliando la Méchanique Analytique. Giornata di Studio su Louis Lagrange (pp. 193-214). Milano: LED.
[39] Drago, A. (2010a). La teoria delle relatività di Einstein del 1905 esaminata secondo il modello di organizzazione basata su un problema. In E. Giannetto, G. Giannini, & M. Toscano (Eds.), Relatività, Quanti, Caos e altre rivoluzioni della Fisica (pp. 215-224). Rimini: Guaraldi.
[40] Drago, A. (2010b). La storia della teoria del corpo nero: Le premesse fondazionali di Planck. In E. Giannetto, G. Giannini, & M. Toscano (Eds.), Relatività, Quanti, Caos e altre rivoluzioni della Fisica, Atti del XXVII Congresso della Società Italiana della Storia della Fisica e dell’Astronomia (pp. 253-260). Rimini: Guaraldi.
[41] Drago, A. (2010c). Storia del corpo nero: La strategia effettiva di Planck rivelata dalle sue scelte fondamentali. Atti della Fondazione Giorgio Ronchi, 65, 619-634.
[42] Drago, A. (2012). Pluralism in Logic: The Square of Opposition, Leibniz’ Principle of Sufficient Reason and Markov’s Principle. In J.-Y. Béziau, & D. Jacquette (Eds.), Around and beyond the Square of Opposition (pp. 175-189). Basel: Birk- haueser. http://dx.doi.org/10.1007/978-3-0348-0379-3_12
[43] Drago, A. (2013). The Relationship between Physics and Mathematics in the XIXth Century: The Disregarded Birth of a Foundational Pluralism. In E. Barbin, & R. Pisano (Eds.), The Dialectic Relations between Physics and Mathematics in the XIXth Century (pp. 159-179). Berlin: Springer. http://dx.doi.org/10.1007/978-94-007-5380-8_8
[44] Drago, A., Manno, S. D., & Mauriello, A. (2001). Una presentazione concettuale della meccanica di Lazare Carnot. Giornale di Fisica, 42, 131-156.
[45] Drago, A., & De Martino, P. (2002). Introduzione alla matematica costruttiva. Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche (Napoli), 69, 37-49.
[46] Drago, A., & Oliva R. (1999). Atomism and the Reasoning by Non-Classical Logic. HYLE, 5, 43-55.
[47] Drago, A., & Perno, A. (2004). La teoria geometrica delle parallele impostata coerentemente su un problema (I). Periodico di Matematiche., ser. VIII, 4, 41-52.
[48] Drago, A., & Pisano, R. (2000). Interpretazione e ricostruzione delle Réflexions di Sadi Carnot mediante la logica non classica. Giornale di Fisica, 41, 195-215. [English Translation (2004). Interpretation and Reconstruction of Réflexions by Sadi Carnot through Non-Classical Logic. Atti della Fondazione Giorgio Ronchi, 59, 615-644. Abstract in Bulletin of Symbolic Logic, 8, 130- 131.]
[49] Drago, A., & Pisano, R. (2005). La nota matematica nelle Réflexions sur la Puissance Motrice du Feu di Sadi Carnot: Interpretazione del calcolo col metodo sintetico. Quaderni di Storia della Fisica, 13, 37-57.
[50] Drago, A., & Venezia, A. (2002). A Proposal for a New Approach to Quantum Logic. In C. Mataix, & A. Rivadulla (Eds.), Fisica Cuantica y Realidad. Quantum Physics and Reality (pp. 251-266). Madrid: Facultad de Filosofía, Universidad Complutense de Madrid.
[51] Dugas, R. (1950). Histoire de la Mécanique. Neuchatel: Griffon.
[52] Dugas, R. (1959). La théorie physique au sens de Boltzmann. Neuchatel: Griffon.
[53] Dummett, M. (1978). Elements of Intuitionism. Oxford: Claredon.
[54] Einstein, A. (1905a). Ueber einen die Erzeugung der Verwandlung des Lichtes betreffenden heuristisch Gesichtpunkt. Annalen der Physik, 17, 132-148. Reprinted in J. Stachel (Ed.) (1989), Collected Papers of Albert Einstein (Vol. 2, 149- 165). Princeton, NJ: Princeton U.P.
[55] Einstein, A. (1905b). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891-921. http://dx.doi.org/10.1002/andp.19053221004
[56] Einstein, A. (1905c). Letter to Conrad Habicht, April 14th.
[57] Einstein, A. (1906). Zur Theorie del Lichterzeugung und Lichtabsorption. Annalen der Physik, 20, 199-206 (199).
[58] Einstein, A. (1934). Mein Weltbild. Amsterdam: Querido [English Translation: (1954) Ideas and Opinions. New York: Crown], 17.
[59] Einstein, A. (1949). Autobiographical Notes. In P. A. Schilpp (Ed.), Albert Einstein, Philosopher-Scientist. The Library of Living Philosophers, Open Court, La Salle IL.
[60] El’yashevich, M. A. (1979). Einstein’s Part in the Development of Quantum Concepts. Soviet Physics Uspekhi, 22, 555-575 (556-563).
[61] Esposito, G. (1997). “Teorie di principi” e “teorie costruttive” in Einstein: Una reinterpretazione. In P. Tucci (Ed.), Atti XVI Conv. Naz. Storia della Fisica (pp. 425-456). Milano.
http://www.brera.unimi.it/sisfa/atti/atti1996.html
[62] Flores, F. (1999). Einstein’s Theory of Theories and Types of Theoretical Explanation. International Studies in Philosophy of Science, 13, 123-134. http://dx.doi.org/10.1080/02698599908573613
[63] Frisch, M. (2006). Mechanics, Principles, and Lorentz’ Cautious Realism. Studies in History and Philosophy of Modern Physics, 36, 659-679. http://dx.doi.org/10.1016/j.shpsb.2005.07.002
[64] Gardiès, J.-L. (1991). Le raisonnement par l’absurde. Paris: PUF.
[65] Gillispie, C. C. (1971). Lazare Carnot Savant. Princeton, NJ: Princeton U.P.
[66] van Heijenoort, J. (1967). Gödel’s Theorem. In Encyclopedia of Philosophy. London: Macmillan.
[67] Heyting, A. (1960). Intuitionism. Amsterdam: North-Holland.
[68] Hintikka, J. (1989). Is There Completeness in Mathematics After Gödel? Philosophical Topics, 17, 69-90. http://dx.doi.org/10.5840/philtopics19891724
[69] Hintikka, J., Gruender, C. D., & Agazzi, E. (Eds.) (1981). Pisa Conference on the History and Philosophy of Science. Boston, MA: Reidel.
[70] Horn, L. R. (1989). The Natural History of Negation. Chicago, IL: Chicago U.P.
[71] Horn, L. R. (2002). The Logic of Logical Double Negation. In K. Yasuhiko (Ed.), Proceedings of the Sophia Symposium on Negation (pp. 79-112). Tokyo: Sophia University.
[72] Jammer, M. (1966). The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill.
[73] Klein, M. J. (1961). Max Planck and the Beginning of Quantum Theory. Archive for History of Exact Sciences, 1, 459-479. http://dx.doi.org/10.1007/BF00327765
[74] Klein, M. J. (1963). Einstein’s First Paper on Quanta. The Natural Philosopher, 2, 59-86.
[75] Klein, M. J. (1967). Thermodynamics in Einstein’s Thought. Science, 157, 509-516. http://dx.doi.org/10.1126/science.157.3788.509
[76] Klein, M. J. (1970). Paul Ehrenfest. The Making of a Theoretical Physicist. Amsterdam: North-Holland.
[77] Klein, M. J. (1979). Einstein and the Development of Quantum Physics. In A. P. French (Ed.), Einstein. A Centenary Volume (pp. 133-151). Cambridge, MA: Harvard U.P.
[78] Klein, M. J. (1980). No Firm Foundations: Einstein and the Early Quantum Theory. In H. Woolf (Ed.), Some Strangeness in the Proportion. A Centennial Symposium to Celebrate the Achievements of Albert Einstein (pp. 161-185). Reading, PA: Addison-Wesley.
[79] Klein, M. J. (1982). Some Turns of Phrase in Einstein’s Early Papers. In A. Shimony (Ed.), Physics as Natural Philosophy (pp. 364-373). Cambridge, MA: MIT Press.
[80] Klevgard, P. A. (2008). A Fresh Approach to Quantum Mechanics and Relativity. Chula Vista, CA: Aventine P.
[81] Kogbetlianz, K. G. (1968). Fundamentals of Mathematics from an Advanced Point of View, New York: Gordon and Breach.
[82] Kolmogorov, A. N. (1924/1925). On the Principle “Tertium Non Datur”. Mat. Sb., 32, 646-667. [English Translation in: van Heijenoorth, J. (Ed.) (1967). From Frege to Gödel (pp. 416-437). Cambridge, MA: Harvard U.P.]
[83] Kreisel, G. (1989). Logic Aspects of Axiomatic Method. In H.-D. Ebbinghaus et al. (Eds.), Logic Colloquium’87 (pp. 183-217). Amsterdam: North-Holland.
[84] Kuhn, T. S. (1978). Block-Body Theory and Quantum Discontinuity, 1894-1912 (Chap. VII). Oxford: Claredon.
[85] Lakatos, I. (1978). A Renaissance of Empiricism in the Recent Philosophy of Mathematics. In J. Worral, & G. Currie (Eds.), Philosophical Papers (Vol. 2, pp. 24-42). Cambridge: Cambridge U.P.
[86] Leibniz, G. W. (1686). Letter to Arnaud, July 14th. In L. Couturat (Ed.), Opuscules et Fragments Inedits (p. 402). Paris.
[87] Lobachevsky, I. N. (1840). Geometrische Untersuchungen zur Theorie der Parallelinien. Berlin: Finkl. [English Translation as an Appendix to Bonola, R. (1950) Non-Euclidean Geometry. New York: Dover.]
[88] Lukasiewicz, J. (1970). Selected Works. Amsterdam: North-Holland.
[89] Mach, E. (1986). The Principles of Heat. Boston, MA: Reidel.
[90] Mach, E. (1907). The Science of Mechanics: A Critical and Historical Account of Its Development. Chicago, IL: Open Court.
[91] Markov, A. A. (1962). On Constructive Mathematics. Trudy Mathematicieskie Institut Steklov,67, 8-14. [English Translation in (1971) American Mathematical Society Translations, 98, 1-9.]
[92] Mendeleev, D. I. (1905). Principles of Chemistry. New York: Longmans.
[93] Miller, A. I. (1981). Albert Einstein’s Special Theory of Relativity. Reading, MA: Addison-Wesley.
[94] Millikan, R. A. (1916). A Direct Photoelectric Determination of Planck’s “h”. Physical Review, 7, 355-388. http://dx.doi.org/10.1103/PhysRev.7.355
[95] Millikan, R. A. (1917). The Electron. Chicago, IL: Chicago U.P.
[96] Newton, I. (1687). Philosophiae Naturalis Principia Mathematica. London: Streater J.
[97] Newton, I. (1704). Optiks. London: Innys W.
[98] Norton, J. D. (2006). Atoms, Entropy, Quanta: Einstein’s Miraculous Argument of 1905. Studies in History and Philosophy of Modern Physics, 37, 71-100.
[99] Pais, A. (1979). Einstein and Quantum Theory. Reviews of Modern Physics, 41, 863-913 (871-873).
[100] Plato (360 B.C.). Republic. [English Translation: The Internet Classic Archive.
http://classics.mit.edu/Plato/republic.html]
[101] Poincaré, H. (1903). La Science et l’Hypothèse. Paris: Hermann.
[102] Poincaré, H. (1905). La Valeur de la Science. Paris: Flammarion.
[103] Prawitz, D. (1977). Meaning and Proofs. Theoria, 43, 6-39.
[104] Prawitz, D., & Melmnaas, P. E. (1968). A Survey of Some Connections between Classical, Intuitionistic and Minimal Logic. In A. Schmidt, K. Schutte, & H. J. Thiele (Eds.), Contributions to Mathematical Logic (pp. 215-229). Amsterdam: North- Holland.
[105] Rayleigh, J. W. S. (1900). Remarks upon the Law of Complete Radiation. Philosophical Magazine, 49, 539-540. http://dx.doi.org/10.1080/14786440009463878
[106] Rosenfeld, L. (1936). La première phase de l’évolution de la théorie des quanta. Osiris, 2, 149-196. http://dx.doi.org/10.1086/368459
[107] Rynasiewiecz, R., & Renn, J. (2006). The Turning Point of Einstein’s Annus Mirabilis. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 37, 5-35. http://dx.doi.org/10.1016/j.shpsb.2005.12.002
[108] Sainati, V. (1990). La teoria aristotelica dell’apodissi. Teoria, 10, 3-47.
[109] Seelig, C. (1956). Albert Einstein. A Documentary Bibliography. London: Staples.
[110] Shapiro, A. E. (1984). Experiment and Mathematics in Newton’s Theory of Color. Physics Today, 37, 34-42. http://dx.doi.org/10.1063/1.2916400
[111] Stachel, J. (1989). Einstein Early Work on the Quantum Hypothesis. In J. Stachel (Ed.), Collected Papers of Albert Einstein (Vol. 2, pp. 134-148). Princeton, NJ: Princeton U.P.
[112] Stachel, J. (2005). Introduction to the Centenary Edition. In J. Stachel (Ed.), Einstein (2005) Einstein Miraculous Year. Princeton, NJ: Princeton U.P.
[113] Ter Haar, D. (1967). The Old Quantum Theory. New York: Pergamon P.
[114] Wallace, W. A. (1984). Galileo and His Sources. The Heritage of the Collegio Romano in Galileo’s Science. Princeton, NJ: Princeton U.P.

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.