The Effect of Using Nano ZrO2 on the Properties of W-ZrC Composite Fabricated through Reaction Sintering
Mostafa Roosta, Hamidreza Baharvandi, Hossein Abdizade
.
DOI: 10.4236/njgc.2011.11001   PDF    HTML     4,811 Downloads   10,613 Views   Citations

Abstract

To fabricate W-ZrC composite through reaction sintering at first WC and ZrO2 powders with molar ratio of 3-1 are ball milled, then the green body made from this mixture is sintered. Since reactivity is the main problem in sintering of mironized powders the starting ZrO2 powder is selected in nano size to see whether the reaction improves. The XRD pattern indicates that W-ZrC composite has been formed, although some unreacted compounds still exist and some unwanted components have been created. In the case of using nano powders the amount of unreacted WC and ZrO2 phases and unwanted W2C phase reduces and the reaction progresses better. Additionally by using nano powders the reaction progressed and the mechanical proprieties including density, hardness, Elastic modulus and Flexural strength improved.

Share and Cite:

M. Roosta, H. Baharvandi and H. Abdizade, "The Effect of Using Nano ZrO2 on the Properties of W-ZrC Composite Fabricated through Reaction Sintering," New Journal of Glass and Ceramics, Vol. 1 No. 1, 2011, pp. 1-6. doi: 10.4236/njgc.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Zhang, Y. Wang, Y. Zhou and G. Song, “Compressive Deformation Behavior of a 30 vol.%ZrCp/W Composite at Temperatures of 1300-1600?C,” Materials Science and Engineering A, Vol. 474, No. 1-2, 2008, pp. 382-389. doi:10.1016/j.msea.2007.04.024
[2] M. Roosta and H. Baharvandi, “The Comparison of W/Cu and W/ZrC Composites Fabricated through Hot-Press,” International Journal of Refractory Metals and Hard Materials, Vol. 28, No. 5, 2010, pp. 587-592. doi:10.1016/j.ijrmhm.2010.04.006
[3] B. Dickerson, P. J. Wurm, J. R. Schorr, W. P. Hoffman, P. G. Wapner and K. H. Sandhage, “Near Net Shape Ultra High Melting Recession Resistant ZrC/W-Based Rocket Nozzle Liners via the Displacive Compensation of Porosity (DCP) Method,” Journal of Materials Science, Vol. 39, No. 19, 2004, pp. 6005-6015. doi:10.1023/B:JMSC.0000041697.67626.46
[4] P. Kumar and K. H. Sandhage, “The Displacive Compensation of Porosity (DCP) Method for Fabricating Dense, Shaped, High-Ceramic-Bearing Bodies at Modest Temperatures,” Journal of Materials Science, Vol. 34, No. 23, 1999, pp. 5757-5769. doi:10.1023/A:1004754117195
[5] T. Zhang, Y. Wang, Y. Zhou, T. Lei and G. Song, “Effect of Temperature Gradient in the Disk during Sintering on Microstructure and Mechanical Properties of ZrCp/W Composite,” International Journal of Refractory Metals and Hard Materials, Vol. 27, No. 1, 2009, pp 126-129. doi:10.1016/j.ijrmhm.2008.05.005
[6] G. Song, Y. Wang and Y. Zhou, “The Mechanical and Thermophysical Properties of ZrC/W Composites at Elevated Temperature,” Materials Science and Engineering A, Vol. 334, No. 1-2, 2002, pp. 223-232. doi:10.1016/S0921-5093(01)01802-0
[7] T. Zhang, Y. Wang, Y. Zhou, T. Lei and G. Song, “Elevated Temperature Compressive Failure Behavior of a 30 vol.%ZrCp/W Composite,” International Journal of Refractory Metals and Hard Materials, Vol. 25, No. 5-6, 2007, pp. 445-450. doi:10.1016/j.ijrmhm.2006.06.001
[8] G. Song, Y. Wang and Y. Zhou, “Effect of Carbide Particles on the Ablation Properties of Tungsten Composites,” Materials Characterization, Vol. 50, No. 4-5, 2003, pp. 293-303. doi:10.1016/S1044-5803(03)00123-2
[9] G. Song, Y. Wang and Y. Zhou, “Thermo Mechanical Properties of TiC Particle-Reinforced Tungsten Composites for High Temperature Applications,” International Journal of Refractory Metals and Hard Materials, Vol. 21, No. 1-2, 2003, pp. 1-12. doi:10.1016/S0263-4368(02)00105-1
[10] G. Song, Y. Wang and Y. Zhou, “The Microstructure and Elevated Temperature Strength of Tungsten-Titanium Carbide Composite,” Journal of Materials Science, Vol. 37, No. 16, 2002, pp. 3541-3548. doi:10.1023/A:1016583611632
[11] G. Song, Y. Wang, Y. Zhou and T. Lei, “Elevated Temperature Strength of a 20 vol% ZrCp/W Composite,” Journal of Materials Science Letters, Vol. 17, No. 20, 1998, pp. 1739-1741. doi:10.1023/A:1006639606300
[12] G. Song, Y. Wang and Y. Zhou, “Elevated Temperature Ablation Resistance and Thermo Physical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles,” Journal of Materials Science, Vol. 36, No. 19, 2001, pp. 4625-4631. doi:10.1023/A:1017989913219
[13] S. C. Zhang, G. E. Hilmas and W. G. Fahrenholtz, “Zirconium Carbide-Tungsten Cermets Prepared by in Situ Reaction Sintering,” Journal of the American Ceramic Society, Vol. 90, No. 6, 2007, pp. 1930-1934. doi:10.1111/j.1551-2916.2007.01642.x
[14] L. J. Lin, G. Z. Ren, M. P. Chen and Y. Liu, “The Behavior of Er3+ Dopant during Crystallization in Oxyfluoride Silicate Glass Ceramics,” Journal of Alloys and Compounds, Vol. 486, No. 1-2, 2009, pp. 261-264. doi:10.1016/j.jallcom.2009.05.154
[15] M. Roosta, H. Baharvandi and H. Abdizade, “The Evaluation of W/ZrC Composite Fabricated through Reaction Sintering of Two Precursors: Conventional ZrO2/ WC and Novel ZrSiO4/WC,” International Journal of Refractory Metals and Hard Materials, IJRMHM-D-11- 00040R1. (In Press)
[16] M. Kokabi, A. A. Babaluo and A. Barati, “Gelation Process in Low-Toxic Gelcasting Systems,” Journal of the European Ceramic Society, Vol. 26, No. 15, 2006, pp. 3083-3090. doi:10.1016/j.jeurceramsoc.2005.08.020
[17] M. D. Vlajic and V. D. Krstic, “Strength and Machining of Gelcast SIC Ceramics,” Journal of Materials Science, Vol. 37, No. 14, 2002, pp. 2943-2947. doi:10.1023/A:1016064913446
[18] Y. Li and Z. M. Guo, “Gelcasting of WC-8 wt%Co Tungsten Cemented Carbide,” International Journal of Refractory Metals and Hard Materials, Vol. 26, No. 5, 2008, pp. 472-477. doi:10.1016/j.ijrmhm.2007.11.003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.