Developing an Advanced Prototype of the Acousto-Optical Radio-Wave Spectrometer for Studying Star Formation in the Milky Way

Download Download as PDF (Size:1218KB)  HTML   XML  PP. 128-144  
DOI: 10.4236/ijaa.2014.41012    4,618 Downloads   5,698 Views   Citations

ABSTRACT

The designed practically prototype of an advanced acousto-optical radio-wave spectrometer is presented in a view of its application to investigating the Milky Way star formation problems. The potential areas for observations of the cold interstellar medium, wherein such a spectrometer can be exploited successfully at different approximations, are: 1) comparison of the Milky Way case with extragalactic ones at scale of the complete galactic disk; 2) global studies of the Galactic spiral arms; and 3) characterization of specific regions like molecular clouds or star clusters. These aspects allow us to suggest that similar instrument will be really useful. The developed prototype of spectrometer is able to realize multi-channel wideband parallel spectrum analysis of very-high-frequency radio-wave signals with an improved resolution power exceeding 103. It includes the 1D-acousto-optic wide-aperture cell as the input device for real-time scale data processing. Here, the current state of developing this acousto-optical spectrometer in frames of the astrophysical instrumentation is briefly discussed, and the data obtained experimentally with a tellurium dioxide crystalline acousto-optical cell are presented. Then, we describe a new technique for more precise spectrum analysis within an algorithm of the collinear wave heterodyning. It implies a two-stage integrated processing, namely, the wave heterodyning of a signal in an acoustically square-law nonlinear medium and then the optical processing in the same solid-state cell. Technical advantage of this approach lies in providing a direct multi-channel parallel processing of ultra-high-frequency radio-wave signals with the resolution power exceeding 104. This algorithm can be realized on a basis of exploiting a large-aperture effective acousto-optical cell, which operates in the Bragg regime and performs the ultra-high-frequency co-directional collinear acoustic wave heterodyning. The general concept and basic conclusions here are confirmed by proof-of-principle experiments with the specially designed cell of a new type based on a lead molybdate crystal.

Cite this paper

Shcherbakov, A. and Luna, A. (2014) Developing an Advanced Prototype of the Acousto-Optical Radio-Wave Spectrometer for Studying Star Formation in the Milky Way. International Journal of Astronomy and Astrophysics, 4, 128-144. doi: 10.4236/ijaa.2014.41012.

References

[1] Bastian, N., Cabrera-Ziri, I., Davies, B. and Larsen, S.S. (2013) Constraining Globular Cluster Formation Through Studies of Young Massive Clusters—I. A Lack of Ongoing Star Formation within Young Clusters. Monthly Notices of the Royal Astronomical Society, Advance Access, 12 p. http://dx.doi.10.1093/mnras/stt1779
[2] Offner, S., Robitaille, T.P., Hansen, C., McKee, C.F. and Klein, R.I. (2012) Oberving Simulated Protostars with Outflows: How Accurate Are Protostellar Properties Inferred from SEDs?” Astrophysical Journal, 753, 98-115. http://dx.doi.10.1088/0004-637X/753/2/98
[3] II Evans, N.J., Dunham, M.M., Jorgensen, J.K., Enoch, M.L., Merín, B., van Dishoeck, E.F., Alcalá, J.M., Myers, P.C., Stapelfeldt, K.R., Huard, T.L., Allen, L.E., Harvey, P.M., van Kempen, T., Blake, G.A., Koerner, D.W., Mundy, L.G., Padgett, D.L. and Sargent, A.I. (2009) The Spitzer c2d Legacy Results: Star-Formation Rates and Efficiencies; Evolution and Lifetimes. Astrophysical Journal Supplements, 181, 321-350. http://dx.doi.10.1088/0067-0049/181/2/321
[4] Ph. André, et al. (2010) From Filamentary Clouds to Prestellar Cores to the Stellar IMF: Initial Highlights from the Herschel Gould Belt Survey. Astronomy & Astrophysics, 518, L102-L109. http://dx.doi.10.1051/0004-6361/201014666
[5] Grenier, I.A. (2004) The Gould Belt, Star Formation, and the Local Interstellar Medium. arXiv:astro-ph/0409096.
[6] Mayya, Y.D., Carrasco, L. and Luna, A. (2005) The Discovery of Spiral Arms in the Starburst Galaxy M82. Astrophysical Journal, 628, L33-L36. http://dx.doi.10.1086/432644
[7] Mayya, Y.D., Romano, R., Rodríguez Merino, L., Luna, A., Carrasco, L. and Rosa González, D. (2008) HST ACS Imaging of M82: A Comparison of Mass and Size Distribution Functions of the Younger Nuclear and Older Disk Clusters. Astrophysical Journal, 679, 404-419. http://dx.doi.10.1086/587541
[8] Mayya, Y.D., Rosa González, D., Santiago-Cortés., M., Arellano-Córdova, K. and Rodríguez, M. (2013) GTC Long-Slit Spectroscopy of Compact Stellar Clusters in M81. Revista Mexicana de Astronomía y Astrofísica Conference Series, 42, 22-23.
[9] Kennicutt, R.C. and Evans, N.J. (2012) Star Formation in the Milky Way and Nearby Galaxies. Annual Review of Astronomy & Astrophysics, 50, 531-608. http://dx.doi.10.1146/annurev-astro-081811-125610
[10] Salak, D., Nakai, N., Miyamoto, Y., Yamauchi, A. and Tsuru, T.G. (2013) Large-Field CO(J = 1 → 0) Observations of the Starburst Galaxy M 82. Publications of the Astronomical Society of Japan, 65, 66-81.
[11] Heithausen, A. (2012) On the Nature of Dust Clouds in the Region towards M81 and NGC 3077. Astronomy & Astrophysics, 543, 21-27. http://dx.doi.10.1051/0004-6361/201117861
[12] Elmegreen, B.G. (2011) Star Formation on Galactic Scales: Empirical Laws. European Astronomical Society Publications Series, 51, 3-17. http://dx.doi.10.1051/eas/1151001
[13] Luna, A., Bronfman, L., Carrasco, L. and May, J. (2006) Molecular Gas, Kinematics, and OB Star Formation in the Spiral Arms of the Southern Milky Way. Astrophysical Journal, 641, 938-948. http://dx.doi.10.1086/500163
[14] Efremov, Yu.N. (2011) On the Spiral Structure of the Milky Way Galaxy. Astronomy Reports, 55, 108-122. http://dx.doi.10.1134/S1063772911020016
[15] Bronfman, L., May, J. and Luna, A. (2000) A CO Survey of the Southern Galaxy. In: Mangum, J.G. and Radford, S.J.E., Eds., Imaging at Radio through Submillimeter Wavelengths, Astronomical Society of the Pacific Conference Series, 217, 66-71.
[16] Sawada, T., Hasegawa, T., Handa, T., Morino, J.-I., Oka, T., Booth, R., Bronfman, L., Hayashi, M., Luna Castellanos, A., Nyman, L.-A., Sakamoto, S., Seta, M., Shaver, P., Sorai, K. and Usuda, K.S. (2001) The Tokyo-Onsala-ESO-Calan Galactic CO J = 2-1 Survey. I. The Galactic Center Region. Astrophysical Journal Supplements, 136, 189-219. http://dx.doi.10.1086/321793
[17] Mayya, Y.D., Luna, A., Carrasco, L. and Bronfman, L. (2012) The Interplay Between the Young Stellar Super Cluster Westerlund 1, and the Surrounding Interstellar Medium. European Physical Journal Web of Conferences, 19, 8006-8009. http://dx.doi.10.1051/epjconf/20121908006
[18] Luna, A., Mayya, Y.D., Carrasco, L. and Bronfman, L. (2010) The Discovery of a Molecular Cavity in the Norma Near Arm Associated with H.E.S.S gamma-ray Source Located in the Direction of Westerlund 1. Astrophysical Journal, 713, L45-L49. http://dx.doi.10.1088/2041-8205/713/1/L45
[19] Zinnecker, H. and Yorke, H.W. (2007) Toward Understanding Massive Star Formation. Annual Review of Astronomy and Astrophysics, 45, 481-563. http://dx.doi.10.1146/annurev.astro.44.051905. 092549
[20] Retes, R., Luna, A., Mayya, D. and Carrasco, L. (2009) Embedded Young Stellar Population in the Molecular Region Towards IRAS 18236-1205 Source. Revista Mexicana de Astronomía y Astrofísica, Conference Series, 37, 165-169. http://adsabs.harvard.edu/abs/2009RMxAC..37..165R
[21] Retes, R., Luna, A., Mayya Y.D. and Carrasco, L. (2011) Characterizing the Embedded Young Stellar Objects in the Galactic Star-forming Region IRAS 18236-1205. Revista Mexicana de Astronomía y Astrofísica, Conference Series, 40, 249-250. http://adsabs.harvard.edu/abs/2011RMxAC..40..249R
[22] André, Ph., Konyves, V., Arzoumanian, D., Palmeirim, P. and Peretto, N. (2013) Star Formation as Revealed by Herschel. Astronomical Society of the Pacific Conferences, 476, 95.
[23] Bronfman, L. and Merello, M. (2013) From Large Scale Surveys of the Galaxy to High Resolution Observations with ALMA. Astronomical Society of the Pacific Conferences, 476, 231.
[24] Shcherbakov, A.S., Balderas Mata, S.E., Tepichin Rodriguez, E., Luna Castellanos, A., Sanchez Lucero, D. and Maximov, Je. (2007) The Main Peculiarities of Arranging the Optical Scheme of Acousto-Optical Spectrometer for the Mexican Large Millimeter Telescope. Proceedings of SPIE, 6663, 1-9.
[25] Shcherbakov, A.S., Luna Castellanos, A., Balderas Mata, S. E. and Maximov, Je. (2007) Upgrading the Frequency Resolution of Spectrum Analyzers for Radio-Astronomy due to Exploiting a Multi-Phonon Light Scattering in TeO2 Crystalline Modulators. Proceedings of SPIE, 6796, 1-10.
[26] Shcherbakov, A.S., Luna Castellanos, A. and Balderas Mata, S.E. (2007) Optical Modulators Exploting a Multi-Phonon Light Scattering in TeO2 Structures. Proceedings of SPIE, 6796, 1-12.
[27] Shcherbakov, A.S., Tepichin Rodriguez, E., Aguirre Lopez, A. and Maximov, Je. (2009) Frequency Bandwidth and Potential Resolution of Optical Modulators Exploiting a Multi-Phonon Light Scattering in Crystals. Optik—International Journal for Light and Electron Optics, 120, 301-312.
http://doi:10.1016/j.ijleo.2007.06.027
[28] Herrera Martinez, G., Luna Castellanos, A., Carrasco Bazúa, L., Shcherbakov, A.S., Sanchez Lucero, D. and Mendoza Torres, E. (2009) A Design of an Acousto-Optical Spectrometer. Mexican Review of Astromomy & Astrophysics, Conference Series, 37, 156-159.
[29] Shcherbakov, A.S., Luna Castellanos, A. and Sanchez Lucero, D. (2009) Characterization of the Beam Shaper and Fourier Transform System in a Prototype of the Acousto-Optical Spectrometer for Mexican Large Millimeter Telescope. Proceedings of SPIE, 7386, 1-12.
[30] Shcherbakov, A.S., Sanchez Lucero, D., Luna Castellanos, A. and Maximov, Je. (2010) Some Peculiarities of Designing the Optical Scheme of Tellurium Dioxide Crystalline Cell Based Acousto-Optical Spectrometer for the Mexican Large Millimeter Telescope. Proceedings of SPIE, 7598, 1-10.
[31] Herrera Martínez, G., Luna Castellanos, A., Carrasco Bazúa, L. and Shcherbakov, A.S. (2011) Testing the Bragg Cell of an Acousto-Optical Spectrometer for Radio Astronomy. Mexican Review of Astromomy & Astrophysics, Conference Series, 40, 305.
[32] Shcherbakov, A.S., Sanchez Lucero, D. and Luna Castellanos, A. (2011) Global Characterization of an Advanced Prototype of a Multi-Channel Acousto-Optical Spectrometer for the Mexican Large Millimeter Telescope. Proceedings of SPIE, 7934, 1-12.
[33] Shcherbakov, A.S., Sanchez Lucero, D., Luna Castellanos, A. and Maximov, Je. (2011) Characterizing the Polarization Features of a Multi-Prism Fused-Silica Beam Expander for a Wide-Aperture Acousto-optic Applications. Proceedings of SPIE, 7934, 1-11.
[34] Korablev, O., Fedorova, A., Bertaux, J.-L., Stepanov, A.V., Kiselev, A., Kalinnikov, Yu.K. A., Titov, Yu., Montmessin, F., Dubois, J.P., Villard, E., Sarago, V., Belyaev, D., Reberac, A. and Neefs, E. (2012) SPICAV IR Acousto-Optic Spectrometer Experiment on Venus Express. Planetary and Space Science, 65, 38-57. http://dx.doi.10.1016/j.pss.2012.01.002
[35] Helmich, F.P. (2011) Herschel HIFI—The Heterodyne Instrument for the Far-Infrared. European Astronomical Society Publications Series, 52, 15-20. Http://dx.doi.10.1051/eas/1152003
[36] Born, M. and Wolf, E. (1999) Principles of Optics. 7th Edition, Cambridge University, Cambridge.
[37] Goodman, J.W. (2005) Introduction to Fourier Optics. 3rd Edition, Roberts & Co., Greenwood Village.
[38] Iizuka, K. (2002) Elements of Photonics. Vol. 1, John Wiley & Sons, New York.
[39] Balakshy, V.I., Parygin, V.N. and Chirkov, L.E. (1985) Physical Principles of Acousto-Optics. Radio i Szyaz, Moscow.
[40] Das, P.D. and DeCusatis, C.M. (1991) Acousto-Optic Signal Processing: Fundamentals & Applications. Artech House, Boston.
[41] Klein, R.W. and Cook, B.D. (1967) A Unified Approach to Ultrasonic Light Diffraction. IEEE Transactions on Sonics & Ultrasonics, 14, 123-134. http://dx.doi.org/10.1109/T-SU.1967.29423
[42] Dmitriev, V.G., Gurzadyan, G.G. and Nikogosyan, D.N. (1999) Handbook of Nonlinear Optical Crystals. 3rd Edition, Springer, Berlin. http://dx.doi.org/10.1007/978-3-540-46793-9
[43] Blistanov, A.A. (2007) Crystals for Quantum and Nonlinear Optics. MISIS, Moscow.
[44] Dirac, P.A.M. (1999) The Principles of Quantum Mechanics. 4th Edition, Oxford University Press, Oxford.
[45] Shcherbakov, A.S., Bliznetsov, A.M., Castellanos, A.L. and Sánchez Lucero, D. (2010) Acousto-Optical Spectrum Analysis of Ultra-High Frequency Radio-Wave Analogue Signals With an Improved Resolution Exploiting the Collinear Acoustic Wave Heterodyning. Optik—International Journal for Light and Electron Optics, 121, 1497-1506. http://doi:1016/j.ijleo.2009.02.015
[46] Shcherbakov, A.S., Sánchez Lucero, D., Luna Castellanos, A. and Belokurova, O.I. (2010) Direct Multi-Channel Optical Spectrum Analysis of Radio-Wave Signals Using Collinear Wave Heterodyning in Single Acousto-Optical Cell. Journal of Optics, 12, 045203. http://doi:10.1088/20408978/12/4/ 045203

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.