Share This Article:

Studying Molecular Aspects of the Blood-Brain Barrier Using an in Vitro Model: Contribution of a Global Proteomics Strategy

Full-Text HTML XML Download Download as PDF (Size:422KB) PP. 18-25
DOI: 10.4236/jbm.2014.21003    1,843 Downloads   3,642 Views   Citations

ABSTRACT

A global proteomics strategy was initiated to decipher molecular mechanisms associated with the blood-brain barrier (BBB) phenotype of the brain capillary endothelial cells. The different methods implemented were shown complementarily. The main results obtained using an in vitro BBB model allowed highlighting the role of several protein actors of cytoskeleton remodelling, the involvement of the asymmetric dimethylarginine pathway in regulating endothelial function and the role of tissue non-specific alkaline phosphatase in the regulation of endothelial permeability.

Cite this paper

Karamanos, Y. (2014) Studying Molecular Aspects of the Blood-Brain Barrier Using an in Vitro Model: Contribution of a Global Proteomics Strategy. Journal of Biosciences and Medicines, 2, 18-25. doi: 10.4236/jbm.2014.21003.

References

[1] Cecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.-P. and Fenart, L. (2007) Modelling of the Blood-Brain Barrier in Drug Discovery and Development. Nature Reviews Drug Discovery, 6, 650-661. http://dx.doi.org/10.1038/nrd2368
[2] Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., Yusof, S.R. and Begley, D.J. (2010) Structure and Function of the Blood-Brain Barrier. Neurobiology of Disease, 37, 13-25. http://dx.doi.org/10.1038/nrd2368
[3] Nag, S. (2011) Morphology and Properties of Brain Endothelial Cells. Methods in Molecular Biology, 686, 3-47. http://dx.doi.org/10.1007/978-1-60761-938-3_1
[4] Hawkins, B.T. and Davis, T.P. (2005) The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacological Reviews, 57, 173-185. http://dx.doi.org/10.1124/pr.57.2.4
[5] Pottiez, G., Flahaut, C., Cecchelli, R. and Karamanos, Y. (2009) Understanding the Blood-Brain Barrier Using Gene and Protein Expression Profiling Technologies. Brain Research Reviews, 62, 83-98. http://dx.doi.org/10.1016/j.brainresrev.2009.09.004
[6] Dehouck, M.P., Méresse, S., Delorme, P., Fruchart, J.C. and Cecchelli, R. (1990) An Easier, Reproducible, and Mass-Production Method to Study the Blood-Brain Barrier in Vitro. Journal of Neurochemistry, 54, 1798-1801. http://dx.doi.org/10.1111/j.1471-4159.1990.tb01236.x
[7] Dehouck, M.P., Jolliet-Riant, P., Brée, F., Fruchart, J.C., Cecchelli, R. and Tillement, J.P. (1992) Drug Transfer across the Blood-Brain Barrier: Correlation between in Vitro and in Vivo Models. Journal of Neurochemistry, 58, 1790-1797. http://dx.doi.org/10.1111/j.1471-4159.1992.tb10055.x
[8] Deracinois, B., Flahaut, C., Duban-Deweer, S. and Karamanos, Y. (2013) Comparative and Quantitative Global Proteomics Approaches: An Overview. Proteomes, 1, 180-218. http://dx.doi.org/10.3390/proteomes1030180
[9] Deracinois, B., Duban-Deweer, S., Pottiez, G., Cecchelli, R., Karamanos, Y. and Flahaut, C. (2012) TNAP and EHD1 Are Over-Expressed in Bovine Brain Capillary Endothelial Cells after the Re-Induction of Blood-Brain Barrier Properties. PLoS One, 7, e48428. http://dx.doi.org/10.1371/journal.pone.0048428
[10] Pottiez, G., Sevin, E., Cecchelli, R., Karamanos, Y. and Flahaut, C. (2009) Actin, Gelsolin and Filamin-A Are Dynamic Actors in the Cytoskeleton Remodelling Contributing to the Blood Brain Barrier Phenotype. Proteomics, 9, 1207-1219. http://dx.doi.org/10.1002/pmic.200800503
[11] Pottiez, G., Deracinois, B., Duban-Deweer, S., Cecchelli, R., Fenart, L., Karamanos, Y. and Flahaut, C. (2010) A Large-Scale Electrophoresis- and Chromatography-Based Determination of Gene Expression Profiles in Bovine Brain Capillary Endothelial Cells after the Re-Induction of Blood-Brain Barrier Properties. Proteome Science, 8, 57. http://dx.doi.org/10.1186/1477-5956-8-57
[12] Pottiez, G., Duban-Deweer, S., Deracinois, B., Gosselet, F., Camoin, L., Hachani, J., Couraud, P.-O., Cecchelli, R., Dehouck, M.-P., Fenart, L., Karamanos, Y. and Flahaut, C. (2011) A Differential Proteomic Approach Identifies Structural and Functional Components That Contribute to the Differentiation of Brain Capillary Endothelial Cells. Journal of Proteomics, 75, 628-641. http://dx.doi.org/10.1016/j.jprot.2011.09.002
[13] Méresse, S., Dehouck, M.P., Delorme, P., Bensa?d, M., Tauber, J.P., Delbart, C., Fruchart, J.C. and Cecchelli, R. (1989) Bovine Brain Endothelial Cells Express Tight Junctions and Monoamine Oxidase Activity in Long-Term Culture. Journal of Neurochemistry, 53, 1363-1371. http://dx.doi.org/10.1111/j.1471-4159.1989.tb08526.x
[14] Booher, J. and Sensenbrenner, M. (1972) Growth and Cultivation of Dissociated Neurons and Glial Cells from Embryonic Chick, Rat and Human Brain in Flask Cultures. Neu-robiology, 2, 97-105.
[15] Culot, M., Lundquist, S., Vanuxeem, D., Nion, S., Landry, C., Delplace, Y., Dehouck, M.-P., Berezowski, V., Fenart, L. and Cecchelli, R. (2008) An in Vitro Blood-Brain Barrier Model for High Throughput (HTS) Toxicological Screening. Toxicology in Vitro, 22, 799-811. http://dx.doi.org/10.1016/j.tiv.2007.12.016
[16] Gosselet, F., Candela, P., Sevin, E., Berezowski, V., Cecchelli, R. and Fenart, L. (2009) Transcriptional Profiles of Receptors and Transporters Involved in Brain Cholesterol Homeostasis at the Blood-Brain Barrier: Use of an in Vitro Model. Brain Research, 1249, 34-42. http://dx.doi.org/10.1016/j.brainres.2008.10.036
[17] Duban-Deweer, S., Flahaut, C. and Karamanos, Y. (2012) The Proteome of Brain Capillary Endothelial Cells: Towards a Molecular Characterization of an in Vitro Blood-Brain Barrier Model. In: Karamanos, Y., Ed., Expression Profiling in Neuroscience (Vol. 64), Humana Press: Totowa, 161-179. http://dx.doi.org/10.1007/978-1-61779-448-3_10
[18] Peterson, G.L. (1977) A Simplification of the Protein Assay Method of Lowry et al. Which Is More Generally Applicable. Analytical Biochemistry, 83, 346-856. http://dx.doi.org/10.1016/0003-2697(77)90043-4
[19] Pont, F. and Fournié, J.J. (2010) Sorting Protein Lists with nwCompare: A Simple and Fast Algorithm for n-Way Comparison of Proteomic Data Files. Proteomics, 10, 1091-1094. http://dx.doi.org/10.1002/pmic.200900667
[20] Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nature Protocols, 4, 44-57. http://dx.doi.org/10.1038/nprot.2008.211
[21] Mi, H., Dong, Q., Muruganujan, A., Gaudet, P., Lewis, S. and Thomas, P.D. (2010) PANTHER Version 7: Improved Phylogenetic Trees, Orthologs and Collaboration with the Gene Ontology Consortium. Nucleic Acids Research, 38, D204-210. http://dx.doi.org/10.1093/nar/gkp1019
[22] Thomas, P.D., Campbell, M.J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A. and Narechania, A. (2003) PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Research, 13, 2129-2141. http://dx.doi.org/10.1101/gr.772403
[23] Deracinois, B., Pottiez, G., Chafey, P., Teerlink, T., Camoin, L., Davids, M., Broussard, C., Couraud, P.-O., Dehouck, M.-P., Cecchelli, R., Karamanos, Y. and Flahaut, C. (2013) Glial-Cell-Mediated Re-Induction of the Blood-Brain Barrier Phenotype in Brain Capillary Endothelial Cells: A Differential Gel Electrophoresis Study. Proteomics, 13, 1185- 1199. http://dx.doi.org/10.1002/pmic.201200166
[24] Duban-Deweer, S., Hachani, J., Deracinois, B., Cecchelli, R., Flahaut, C. and Karamanos, Y. (2012) Proteomic Analysis of Plasma Membrane Proteins in an In Vitro Blood-Brain Barrier Model. In: Man, T.K., Ed., Proteomics—Human Diseases and Protein Functions, InTech, 391-416. http://dx.doi.org/10.5772/30543
[25] Hoshi, Y., Uchida, Y., Tachikawa, M., Inoue, T., Ohtsuki, S. and Terasaki, T. (2013) Quantitative Atlas of Blood-Brain Barrier Transporters, Receptors, and Tight Junction Proteins in Rats and Common Marmoset. Journal of Pharmaceutical Sciences, 102, 3343-3355. http://dx.doi.org/10.1002/jps.23575
[26] Uchida, Y., Tachikawa, M., Obuchi, W., Hoshi, Y., Tomioka, Y., Ohtsuki, S. and Terasaki, T. (2013) A Study Protocol for Quantitative Targeted Absolute Proteomics (QTAP) by LC-MS) MS: Application for Inter-Strain Differences in Protein Expression Levels of Transporters, Receptors, Claudin-5, and Marker Proteins at the Blood-Brain Barrier in ddY, FVB, and. Fluids Barriers CNS, 10, 21. http://dx.doi.org/10.1186/2045-8118-10-21

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.