Health> Vol.6 No.5, February 2014

Monthly admissions for heart failure (HF)— Environmental links

DownloadDownload as PDF (Size:212KB)  HTML    PP. 442-447  

ABSTRACT

In recent years the role of HF in the outcomes, cost of treatment in cardiology is raising. Concomitantly a number of studies were published demonstrating connections of many cardiac events with Space Weather Activity-Solar, Geomagnetic, Cosmic Ray (Neutron) activity levels. The aim of this study was to study links of timing of hospital admissions for HF with season and space weather components. Patients and Methods: monthly admissions of male and female patients for HF in two hospitals of Rabin Medical Center for years 2000-2012 were the subject of the study. 76,601 patient were included, 42,293 men, 34,308 woman. The cosmophysical data from USA, Russia and Finland were used. Results: Monthly average number of admissions for HF: 491.0 ± 82.4, 271.1 ± 46.75 for men and 219.9 ± 39.8 for woman. Gender admissions strongly correlated. Monthly admission for HF number differed by 2.2 - 2.5 times. Minimal admissions were in August, September; maximal—in January, February, December and March (according to numbers). It was a significant inverse correlation of monthly HF admissions with monthly solar activity and GMA indices and correlation with CRA (neutron) activity. Conclusion: Monthly admissions number for HF is fluctuated by season of the year, depending on gender and related to monthly solar and Cosmic Ray (Neutron) activity level. Gender differences in HF exacerbation may be a component explaining gender differences in longevity.

Cite this paper

Stoupel, E. , Abramson, E. and Shapiro, M. (2014) Monthly admissions for heart failure (HF)— Environmental links. Health, 6, 442-447. doi: 10.4236/health.2014.65062.

References

[1] Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Lueker, R., Mittleman, M., Samet, J., Smith Jr., S.C. and Tager, I. (2004) AHA scientific statement: Air pollution and cardiovascular disease. Circulation, 109, 2655-2659.
http://dx.doi.org/10.1161/01.CIR.0000128587.30041.C8
[2] Cowie, M. (2013) Essentials of heart failure. Wiley, Blackwell, 115 p.
[3] McMurray, J.J., Adamopoulos, S., Anker, S.D., et al. (2012) ESC committee for practice guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 33, 1787-1847.
[4] Liao, L., Allen, L.A. and Whellan, D.J. (2008) Economic burden of heart failure in the elderly. Pharmacoeconomics, 26, 447-462.
http://dx.doi.org/10.2165/00019053-200826060-00001
[5] Ho, K.K., Pinsky, J.L., Kannel, W.B. and Levy, D. (2004) The epidemiology of heart failure: The Framingham study. Journal of the American College of Cardiology, 22, 6-13A.
http://dx.doi.org/10.1016/0735-1097(93)90455-A
[6] Bleumink, G.S., Knetsch, A.M., Sturkenboom, et al. (2004) Quantifying the heart failure epidemic: Prevalence, incidence rate, lifetime risk and prognosis of heart failure. The Rotterdam Study. European Heart Journal, 25, 1614-1619.
http://dx.doi.org/10.1016/j.ehj.2004.06.038
[7] Mosterd, A., Hoes, A.W., Brayne, D.E., et al. (1999) Prevalence of heart failure and left ventricular dysfunction in the general population. The Rotterdam study. European Heart Journal, 20, 447-455.
http://dx.doi.org/10.1053/euhj.1998.1239
[8] Stewart, S., MacIntyre, K., Capewell, S. and McMurray, J.J. (2003) Heart failure in the aging population: An increasing burden in the 21st century? Heart, 89, 49-53.
http://dx.doi.org/10.1136/heart.89.1.49
[9] McMurray, J.J. and Pheffer, M.A. (2005) Heart failure. Lancet, 365, 1877-1889.
http://dx.doi.org/10.1016/S0140-6736(05)66621-4
[10] Yancy, C.W., Jesup, M., Bozkurt, B., Butler, J., et al. (2013) 2013 ACCF/AHA guideline for the management of heart failure: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. Circulation, 128, 1810-1852.
http://dx.doi.org/10.1161/CIR.0b013e31829e8807
[11] Stoupel, E. (2012) Space weather and timing of cardiovascular events (Clinical Cosmibiology). Lambert Academic Publishing, 72 p.
[12] Stupelis, I. (1971) Prognosis in cardiology. Mintis Press, Vilnius, 162.
[13] Stoupel, E. (1980) Solar-terrestrial prediction: Aspects for preventive medicine. In: Donnelly, R.F., Ed., Solar-Terrestrial Predictions Proceedings, NOAA, Space Environment Laboratory, Boulder, G29-G40.
[14] Stoupel, E. (1976) Forecasting in Cardiology. John Wiley & Sons, New York, 141.
[15] Stoupel, E. (2013) Space weather and medical events: Medical observation for 45 years (Clinical Cosmobiology). In: Space Weather Effects on Humans in Space and on Earth. Proceedings of International Conference (Vol. 2), Space Research Institute, Russian Academy of Sciences, Moscow, 551-559.
[16] Stoupel, E., Petrauskiene, J., Gabbay, U., Kalediene, R., Abramson, E. and Sulkes, J. (2001) Circannual rhythmicity of deaths distribution. Acta Medica Lituanica, 6, 37-42.
[17] Nichol, K.L., Kristin, L. Nichol, M.D., Nordin, J., Mullooly, J., Richard, J., Lask, R., Fillbrandt, K. and Iwane, M. (2003) Influenza vaccination and reduction in hospitalizations for cardiac disease and stroke among the Elderly. 1322-1332.
[18] Chizhevski, A.L. (1976) Terreastrial echos of solar storms. 2nd Edition, Misl’ Press, Moscow, 419.
[19] Barnothy, M.F. (1964) Biological effects of magnetic fields. Plenum Press, New York.
[20] Rozhdestvenskaya, E. and Novikova, K. (1969) Influence of solar activity on the blood fibrinolytic system. Klin Med (Moscow), 47, 65-69.
[21] Oranevski, V.N., Breus, T.K., Baevski, R.M., Rapoport, S.I., Petrov, V.M. and Barsukova, ZhV. (1998) Effect of geomagnetic activity on the functional status of the body. Biofizika, 43, 819-826.
[22] Stoupel, E., Kalediene, R., Petrauskiene, J., Starkuviene, S., Abramson, E., Israelevich, P. and Sulkes, J. (2011) Twenty years study of solar, geomagnetic, cosmic ray activity links with monthly deaths number (n-850304). Journal of Biomedical Science & Engineering, 4, 1-9
[23] Stoupel, E., Abramson, E., Domarkiene, S., Shimshoni, M. and Sulkes, J. (1997) Space proton flux and the temporal distribution of cardiovascular deaths. International Journal of Biometeorology, 40, 113-116.
http://dx.doi.org/10.1007/s004840050029
[24] Stoupel, E., Israelevich, P., Gabbay, U., Abramson, E., Petrauskiene, J., Kalediene, R., Domarkiene, S. and Sulkes, J. (2000) Correlation of two levels of space proton flux with monthly distribution of deaths from cardiovascular disease and suicide. Journal of Basic and Clinical Physiology and Pharmacology, 1, 63-71.
[25] Stoupel, E. (2002) Effect of geomagnetic activity on cardiovascular parameters. Biomedicine & Pharmacother, 56, 246s-256s.
http://dx.doi.org/10.1016/S0753-3322(02)00299-8
[26] Stoupel, E. (1980) Solar-terrestrial prediction: Aspects for preventive medicine. In: Donnelly, R.F., Ed., Solar-Terrestrial Predictions Proceedings (Vol. 4), Space Environment Laboratory, US NOAA, Boulder, G29-G 40.
[27] Stoupel, E. (1976) Forecasting in cardiology. John Wiley & Sons, New York, 141.
[28] Stoupel, E. (2012) Space weather and timing of cardiovascular events (Clinical Cosmobiology). Lambert Academic Publishing, 72 p.
[29] Stoupel, E. (2013) Space weather and medical events: medical observation for 45 years (Clinical Cosmobiology). In: Space Weather Effects on Humans in Space and on Earth. Proceedings of International Conference (Vol. 2), Space Research Institute, Russian Academy of Sciences, Moscow, 551-559.
[30] Stoupel, E., Israelevich, P., Petrauskiene, J., Kalediene, R., Abramson, E. and Sulkes, J. (2002) Cosmic ray activity and monthly number of deaths: A correlative study. Journal of Basic and Clinical Physiology and Pharmacology, 13, 23-32.
http://dx.doi.org/10.1515/JBCPP.2002.13.1.23
[31] Stoupel, E., Joshua, H. and Lahav, J. (1996) Human blood coagulation parameters and geomagnetic activity. European Journal of Internal Medicine, 7, 217-220.
[32] Stoupel, E., Abramson, E., Israelevich, P., Sulkes, J. and Harell, D. (2007) Dynamics of serum C-reactive protein (CRP) and cosmophysical activity. European Journal of Internal Medicine, 18, 124-128.
http://dx.doi.org/10.1016/j.ejim.2006.09.010
[33] Stoupel, E., Abramson, E., Gabbay, U. and Pick, A.I. (1995) Relationship between immunoglobulin levels andextremes of solar activity. International Journal of Biometeorology, 38, 89-91.
http://dx.doi.org/10.1007/BF01270665
[34] Stoupel, E., Monselize, Y. and Lahav, J. (2006) Changes in autoimmune markers of the anti cardiolipin syndrome on days of extreme geomagnetic activity. Journal of Basic and Clinical Physiology and Pharmacology, 17, 269-278.
http://dx.doi.org/10.1515/JBCPP.2006.17.4.269
[35] Stoupel, E., Keret, R., Assa, S., Kaufman, H., Shimshoni, M. and Laron, Z. (1983) Secretion of growth hormone, prolactin and corticosteroids during different levels of geomagnetic activity. Neuroendocrinology Letters, 5, 365-358.
[36] Stoupel, E., Keret, R., Gil-Ad, I., Assa, S., Silbergeld, A., Shimshoni, M. and Laron, Z. (1980) Secretion of growth hormone and prolactin in extreme periods of solar activity in solar cycle 21 (1976-1986). Neuroendocrinology Letters, 5, 191-295.
[37] Stoupel, E., Zabludovsky, M., Wittenberg, C. and Boner, G. (1998) Ambulatory blood pressure monitoring in patients with hypertension on days of high and low geomagnetic activity. International Journal of Hypertension, 39, 293-294.
[38] Stoupel, E., Petrauskiene, J., Kalediene, R., Domarkiene, S., Abramson, E. and Sulkes, J. (1996) Distribution of deaths from ischemic heart disease and stroke: Environmental and aging influences in men and woman. Journal of Basic and Clinical Physiology and Pharmacolog, 7, 303-320.
http://dx.doi.org/10.1515/JBCPP.1996.7.4.303
[39] Stoupel, E., Martfel, J. and Rotenberg, Z. (1994) Paroxysmal atrial fibrillation and stroke in male and female above and below age 65 on days of different geomagnetic activity levels. Journal of Basic and Clinical Physiology and Pharmacology, 5, 315-329.
[40] Stoupel, E., Assali, A., Teplitzky, I., Israelevich, P., Abramson, E., Sulkes, J. and Kornowski, R. (2008) The culprit artery in acute myocardial infarction in different environmental physical activity levels. International Journal of Cardiology, 126, 288-290.
http://dx.doi.org/10.1016/j.ijcard.2007.05.050
[41] Stoupel, E., Abramson, E. and Israelevich, P. (2011) Left anterior descending/right coronary arteries as culprit arteries in acute myocardial infarction (n-2011) in changing physical environment, percutaneous coronary intervention data (2000-2010). Journal of Basic and Clinical Physiology and Pharmacolog, 22, 91-95.
http://dx.doi.org/10.1515/JBCPP.2011.024
[42] Stoupel, E., Zhemaityte, D., Drungeliene, D., Martinkenas, A., Abramson, E. and Sulkes, J. (2002) Klaipeda emergency cardiovascular services: Links with 10 cosmophysical parameters. Journal of Clinical and Basic Cardiology, 5, 225-227.
[43] Stoupel, E., Israelevich, P., Petrauskiene, J., Kalediene, R., Abramson, E. and Sulkes, J. (2002) Cosmic ray activity and monthly number of deaths: A correlative study. Journal of Basic and Clinical Physiology and Pharmacolog, 13, 23-32.
http://dx.doi.org/10.1515/JBCPP.2002.13.1.23
[44] Stoupel, E., Kalediene, R., Petrauskiene, J., Domarkiene, S., Radishauskas, R., Abramson, E., Israelevich, P. and Sulkes, J. (2004) Three kinds of cosmophysical activity: Links to temporal distribution of deaths and occurrence of acute myocardial infarction. Medical Science Monitor, 10, CR80-CR84.
[45] Stoupel, E., Babayev, E., Mustafa, F., Abramson, E., Israelevich, P. and Sulkes, J. (2007) Acute myocardial infarction occurrence: Environmental links-Baku 2003-2005 data. Medical Science Monitor, 13, BR175-BR179.
[46] Stoupel, E., Tamoshiunas, A., Radishauskas, R., Bagdoniene, G., Abramson, E., Sulkes, J. and Israelevich, P. (2010) Acute myocardial infarction (AMI) and intermediate coronary syndrome (ICS). Health, 2, 131-136.
http://dx.doi.org/10.4236/health.2010.22020
[47] Stoupel, E., Tamoshiunas, A., Radishauskas, R., Benotiene, G., Abramson, E. and Israelevich, P. (2011) Neutrons and the plaque: AMI (n-8920) at days of zero GMA/high neutron activity (n-36) and the following days and week. Kaunas, Lithuania, 2000-2007. Clinical & Experimental Cardiology, 2, 121-125.
[48] Stoupel, E., Domarkiene, S., Radishauskas, R., Bernotiene, G., Abramson, E. and Israelevich, S.J. (2004) Links between monthly rates of four types of acute myocardial infarction and their corresponding cosmophysical activity parameters. Journal of Basic and Clinical Physiology and Pharmacolog, 14, 175-184.
[49] Stoupel, E., Tamoshiunas, A., Domarkiene, S., Radishauskas, R., Bernotiene, G. and Abramson, E. (2008) Dynamics of in-hospital cardiac arrhythmia in patients with acute myocardial infarction. Journal of Interventional Cardiac Electrophysiology, 21, 183.
[50] Stoupel, E. (1993) Sudden cardiac deaths and ventricular extrasystoles on days with four levels of geomagnetic activity. Journal of Basic and Clinical Physiology and Pharmacolog, 4, 357-366.
http://dx.doi.org/10.1515/JBCPP.1993.4.4.357
[51] Stoupel, E., Domarkiene, S., Radishauskas, R., Abramson, E. and Sulkes, J. (2011) Sudden cardiac death and geomagnetic activity: Links to age, gender and agony time. Journal of Basic and Clinical Physiology and Pharmacolog, 13, 11-22.
http://dx.doi.org/10.1515/JBCPP.2002.13.1.11
[52] Stoupel, E., Domarkiene, S., Radishauskas, R. and Abramson, E. (2002) Bastille day event and sudden cardiac death. Seminars in Cardiology, 8, 18-21.
[53] Stoupel, E., Babayev, E.S., Mustafa, F.R., Abramson, E., Israelevich, P. and Sulkes, J. (2006) Clinical cosmobiology—Sudden cardiac death and daily/monthly geomagnetic, cosmic ray and solar activity—The Baku study (2003-2005). Sun & Geosphere, 1, 13-16.
[54] Stoupel, E., Domarkiene, S., Radishauskas, R., Abramson, E., Israelevich, P. and Sulkes, J. (2006) Neutrons and sudden cardiac death (SCD)-codes 121-125 ICD 10. Journal of Basic and Clinical Physiology and Pharmacology, 17, 46-54.
http://dx.doi.org/10.1515/JBCPP.2006.17.1.45
[55] Stoupel, E., Israelevich, P., Kusniec, J., Mazur, A., Zabarski, R., Golovchiner, G., Abramson, E. and Strasberg, B. (2006) Battler are neutrons involved in the pathogenesis of life-threatening cardiac arryhthmias? Journal of Basic and Clinical Physiology and Pharmacology, 17, 55-62.
http://dx.doi.org/10.1515/JBCPP.2006.17.1.55
[56] Stoupel, E., Kusniec, J., Mazur, A., Abramson, E., Israelevich, P. and Strasberg, B. (2008) Timing of life-threatening arrhythmias detected by implantable cardioverter-defibrillators in relation to changes in cosmophysical factors. Cardiology Journal, 15, 437-440.
[57] Stoupel, E. (2002) The equilibrium paradigm in clinical cosmobiology. Journal of Basic and Clinical Physiology and Pharmacology, 13, 255-261.
[58] Stoupel, E. (2008) Atherothrombosis: Environmental links. Journal of Basic and Clinical Physiology and Pharmacology, 19, 37-47.
[59] Sigl, G. (2001) Ultra-high—Energy cosmic rays: Physics and astrophysics at extreme energies. Science, 291, 73-79.
[60] Amelino-Camelia, G. (2002) Relativity: Special treatment. Nature, 418, 34-35.
[61] Aharonian, F., Akhperanian, A.G., Bazer-Bachi, A.R., Belicke, M., Benbow, W., Berniohr, K., Boisson, C., et al. (2006) Discover of veryhigh-energy gamma rays from the lactic centre ridge. Nature, 439, 695-698.
http://dx.doi.org/10.1038/nature04467
[62] The Pierre Auger Collaboration (2007) Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science, 318, 938-943.
http://dx.doi.org/10.1126/science.1151124
[63] Johnston, H. (2008) Cosmicray mystery solved at last. 31764, 1-3.
http://physicsworld.com/cws/article/news/
[64] Cho, A. (2007) Universe’s highest-energy particles traced back to other galaxies. Science, 318, 896-897.
www.sciencemag.org
[65] Regan, J.C. and Partridge, L. (2013) Gender and longevity: Why do men die earlier than woman? Comparative and experimental evidence. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 467-479.
http://dx.doi.org/10.1016/j.beem.2013.05.016

  
comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.