OJMM> Vol.4 No.1, March 2014
Review Paper

Overview on the Fungal Metabolites Involved in Mycopathy

DownloadDownload as PDF (Size:896KB) PP. 38-63   DOI: 10.4236/ojmm.2014.41006

ABSTRACT

This review presents several types of metabolites produced by the most common fungal pathogens and their roles in fungal pathogenesis. Toxic metabolites from toxigenic fungi include compounds such as aflatoxins, trichothecenes, ochratoxins, fumonisins, zearalenone and ergot alkaloids, which display hepatotoxicity, nephrotoxicity, neurotoxicity and genotoxicity. The ability of fungi to produce and elaborate hydrolytic enzymes is associated with virulence of several pathogenic fungi. The biogenesis of siderophores is investigated as it is a mechanism of iron acquisition. In particular, these metabolites act as iron chelators and storage compounds to support pathogenic fungi to survive in mammalian hosts whose iron homeostasis is strictly regulated and prevent the formation of free radicals which are formed by free iron. Melanins clearly promote infectivity in a number of species of fungal pathogens. They interfere with oxidative metabolism of phagocytosis making the fungus relatively resistant to phagocyte attack. Several metabolies such as pullulan, mannitol, β-(1,3)-glucan, hem-binding proteins, estrogen-binding proteins, farnesol, agglutinin-like sequence proteins, glucuronoxylomannan and others also have advantages in fungal pathogenicity. The identification of fungal metabolites involved in pathogenesis, and recognition of mechanisms of pathogenesis may lead to development of new efficient anti-fungal therapies.

KEYWORDS


Cite this paper

Al-Fakih, A. (2014) Overview on the Fungal Metabolites Involved in Mycopathy. Open Journal of Medical Microbiology, 4, 38-63. doi: 10.4236/ojmm.2014.41006.

References

[1] Garcia, D., Ramos, A.J., Sanchis, V. and Marin, S. (2009) Predicting Mycotoxins in Foods: A Review. Food Microbiology, 26, 757-769.
http://dx.doi.org/10.1016/j.fm.2009.05.014
[2] Khan, M., Ahmad, I., Aqil, F., Owais, M., Shahid, M. and Musarrat, J. (2010) Virulence and Pathogenicity of Fungal Pathogens with Special Reference to Candida albicans. In: Ahmad, I., Owais, M., Shahid, M. and Aqil, F., Eds., Combating Fungal Infections: Problems and Remedy, Springer, Berlin Heidelberg, 21-45.
http://dx.doi.org/10.1007/978-3-642-12173-9_2
[3] Keller, N.P., Turner, G. and Bennett, J.W. (2005) Fungal Secondary Metabolism—From Biochemistry to Genomics. Nature Reviews Microbiology, 3, 937-947.
http://dx.doi.org/10.1038/nrmicro1286
[4] Yu, J.H. and Keller, N. (2005) Regulation of Secondary Metabolism in Filamentous Fungi. Annual Review of Phytopathology, 43, 437-458.
http://dx.doi.org/10.1146/annurev.phyto.43.040204.140214
[5] Calvo, A.M., Wilson, R.A., Bok, J.W. and Keller, N.P. (2002) Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews, 66, 447-459.
http://dx.doi.org/10.1128/MMBR.66.3.447-459.2002
[6] Fox, E.M. and Howlett, B.J. (2008) Secondary Metabolism: Regulation and Role in Fungal Biology. Current Opinion in Microbiology, 11, 481-487.
http://dx.doi.org/10.1016/j.mib.2008.10.007
[7] Bennett, J.W. and Klich, M. (2003) Mycotoxins. Microbiology and Molecular Biology Reviews, 16, 497-516.
http://dx.doi.org/10.1128/CMR.16.3.497-516.2003
[8] Renshaw, J.C., Robson, G.D., Trinci, A.P.J., Wiebe, M.G., Livens, F.R., Collison, D. and Taylor, R.J. (2002) Fungal siderophores: Structures, Functions and Applications. Mycological Research, 106, 1123-1142.
http://dx.doi.org/10.1017/S0953756202006548
[9] Casadevall, A. (2007) Determinants of Virulence in the Pathogenic Fungi. Fungal Biology Reviews, 21, 130-132.
http://dx.doi.org/10.1016/j.fbr.2007.02.007
[10] Jand, S.K., Sharma, N.S. and Paviter, K.(2005) Mycoses and Mycotoxicosis in Poultry: A Review. The Indian Journal of Animal Sciences, 75, 465-476.
[11] Romani, L. (2004) Immunity to Fungal Infections. Nature Reviews Immunology, 4, 1-23.
http://dx.doi.org/10.1038/nri1255
[12] Hogan, L.H. Klein, B.S. and Levitz, S.M. (1996) Virulence Factors of Medically Important Fungi. Clinical Microbiology Reviews, 9, 469-488.
[13] Kurokawa, C.S. Sugizaki, M.F. and Peracoli, M.T. (1998) Virulence Factors in Fungi of Systemic Mycoses. Revista do Instituto de Medicina Tropical de Sao Paulo, 40, 125-135.
http://dx.doi.org/10.1590/S0036-46651998000300001
[14] Wolf-Hall, C. (2010) Fungal and Mushroom Toxins. In: Juneja, V.K. and Sofos, J.N., Eds., Pathogens and Toxins in Foods: Challenges and Interventions, ASM Press, Washington, 275-285.
[15] Heidtmann-Bemvenuti, R., Mendes, G.L., Scaglioni, P.T., Badiale-Furlong, E. and Souza-Soares, L.A. (2011) Biochemistry and Metabolism of Mycotoxins: A Review. African Journal of Food Science, 5, 861-869.
http://dx.doi.org/10.5897/AJFSX11.009
[16] Jard, G., Liboz, T., Mathieu, F., Guyonvarc’h, A. and Lebrihi, A. (2011) Review of Mycotoxin Reduction in Food and Feed: From Prevention in the Field to Detoxification by Adsorption or Transformation. Food Additives & Contaminants: Part A Chemistry, Analysis, Control, Exposure & Risk Assessment, 28, 1590-1609.
[17] Moss, M.O. (1991) The Environmental Factors Controlling Mycotoxins Formation. In: Smith, J.E. and Anderson, R.A., Eds., Mycotoxins and Animal Foods, CRC Press, Boca Raton, 37-56.
[18] Urughucki, K. and Yamazahi, M. (1978) Toxicology, Biochemistry and Pathology of Mycotoxins. John Wiley & Sons, Hoboken.
[19] Trucksess, M.W. and Scott, P.M. (2008) Mycotoxins in Botanicals and Dried Fruits: A Review. Food Additives & Contaminants: Part A Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, 181-192.
[20] Paterson, R.R. and Lima, N. (2010) Toxicology of Mycotoxins. Molecular, Clinical and Environmental Toxicology, 100, 31-63.
http://dx.doi.org/10.1007/978-3-7643-8338-1_2
[21] Bennett, J.W. (1987) Mycotoxins, Mycotoxicoses, Mycotoxicology and Mycopathologia. Mycopathologia, 100, 3-5.
http://dx.doi.org/10.1007/BF00769561
[22] Gelderblom, W.A., Marasas, W.O., Vleggaar, R., Thiel, P. and Cawood, M.E. (1992) Fumonisins: Isolation, Chemical Characterization and Biological Effects. Mycopathologia, 117, 11-16.
http://dx.doi.org/10.1007/BF00497273
[23] Geisen, R. and Schmidt-Heydt, M. (2009) Physiological and Molecular Aspects of Ochratoxin A Biosynthesis. In: Anke, T. and Weber, D., Eds., A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research: Physiology and Genetics Selected Basic and Applied Aspects, Springer, Berlin Heidelberg, 353-376.
[24] CAST (Council for Agricultural Science and Technology) (2003) Mycotoxins: Risks in Plant, Animal, and Human Systems. Iowa, USA.
[25] Timbrell, J. (2002) Introduction to Toxicology. Taylor & Francis, UK.
[26] Samson, R.A., Hoekstra, E.S., Frisvad, J.C. and Filtenborg, O. (1995) Introduction to Food-Borne Fungi. 4th Edition, Centraalbureau voor Schimmelcultures.
[27] Frisvad, J.C. and Samson, R.A. (2004) Emericella venezuelensis, a New Species with Stellate Ascospores Producing Sterigmatocystin and Aflatoxin B1. Systematic and Applied Microbiology, 27, 672-680.
http://dx.doi.org/10.1078/0723202042369910
[28] Frisvad, J.C., Skouboe, P. and Samson, R.A. (2005) Taxonomic Comparison of Three Different Groups of Aflatoxin Producers and a New Efficient Producer of Aflatoxin B1, Sterigmatocystin and 3-O-Methylsterigmatocystin, Aspergillus rambellii sp. nov. Systematic and Applied Microbiology, 28, 442-453.
http://dx.doi.org/10.1016/j.syapm.2005.02.012
[29] Klich, M.A., Cary, J.W., Beltz, S.B. and Bennett, C.A. (2003) Phylogenetic and Morphological Analysis of Aspergillus ochraceoroseus. Mycologia, 95, 1252-1260.
http://dx.doi.org/10.2307/3761925
[30] Ito, Y., Peterson, S.W., Wicklow, D.T. and Goto, T. (2001) Aspergillus pseudotamarii, a New Aflatoxin Producing Species in Aspergillus Section Flavi. Mycological Research, 105, 233-239.
http://dx.doi.org/10.1017/S0953756200003385
[31] Pildain, M.B., Frisvad, J.C., Vaamonde, G., Cabral, D., Varga, J. and Samson, R.A. (2008) Two Novel Aflatoxin- Producing Aspergillus Species from Argentinean Peanuts. International Journal of Systematic and Evolutionary Microbiology, 58, 725-735.
[32] Varga, J., Frisvad, J.C. and Samson, R.A. (2011) Two New Aflatoxin Producing Species, and an Overview of Aspergillus Section Flavi. Studies in Mycology, 69, 57-80.
http://dx.doi.org/10.3114/sim.2011.69.05
[33] Goldblatt, L.A. (1969) Aflatoxin: Scientific Background, Control, and Implications. Academic Press, New York.
[34] Cotty, P.J. and Jaime-Garcia, R. (2007) Influences of Climate on Aflatoxin Producing Fungi and Aflatoxin Contamination. International Journal of Food Microbiology, 119, 109-115.
[35] Gong, Y., Hounsa, A., Egal, S., Turner, P.C., Sutcliffe, A.E., Hall, A.J., Cardwell, K. and Wild, C.P. (2004) Postweaning Exposure to Aflatoxin Results in Impaired Child Growth: A Longitudinal Study in Benin, West Africa. Environmental Health Perspectives, 112, 1334-1338.
http://dx.doi.org/10.1289/ehp.6954
[36] Wild, C.P. and Turner, P.C. (2002) The Toxicology of Aflatoxins as a Basis for Public Health Decisions. Mutagenesis, 17, 471-481. http://dx.doi.org/10.1093/mutage/17.6.471
[37] Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M. and Aggarwal, D. (2004) Human Aflatoxicosis in Developing Countries: A Review of Toxicology, Exposure, Potential Health Consequences, and Interventions. The American Journal of Clinical Nutrition, 80, 1106-1122.
[38] Kotsonis, F.N. and Burdock, G.A. (2008) Food Toxicology. In: Klaassen, C.D., Ed., Casarett and Doull’s Toxicology: The Basic Science of Poisons, 7th Edition, McGraw-Hill, New York, 485-555.
[39] Weidenborner, M. (2001) Encyclopedia of Food Mycotoxins. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-3-662-04464-3
[40] Squire, R.A. (1981) Ranking Animal Carcinogens: A Proposed Regulatory Approach. Science, 214, 877-880.
http://dx.doi.org/10.1126/science.7302565
[41] Raj, H.G., Prasanna, H.R., Magee, P.N. and Lotlikar, P.D. (1986) Effect of Purified Rat and Hamster Hepatic Glutathione S-Transferases on the Microsome Mediated Binding of Aflatoxin B1 to DNA. Cancer Letters, 33, 1-9.
http://dx.doi.org/10.1016/0304-3835(86)90095-9
[42] Verma, R.J. (2004) Aflatoxin Cause DNA Damage. International Journal of Human Genetics, 4, 231-236.
[43] Cole, R.J. and Cox, R.H. (1981) Handbook of Toxic Fungal Metabolites. Academic Press, New York.
[44] Grove, J.F. (2000) Non-Macrocyclic Trichothecenes Part 2. Progress in the Chemistry of Organic Natural Products, 69, 1-70.
[45] Scott, P.M. (1989) The Natural Occurrence of Trichothecenes. In: Beasley, V.H., Ed., Trichothecene Mycotoxicosis: Pathophysiologic Effects, CRC Press, Boca Raton, 1-26.
[46] Yazar, S. and Omurtag, G.Z. (2008) Fumonisins, Trichothecenes and Zearalenone in Cereals. International Journal of Molecular Sciences, 9, 2062-2090.
http://dx.doi.org/10.3390/ijms9112062
[47] Chu, F.S. (1998) Mycotoxins—Occurrence and Toxic Effect. In: Sadler, M., Strain, J.J. and Caballero, B., Eds., Encyclopedia of Human Nutrition, Academic Press, New York, 858-869.
[48] Pestka, J.J. (2007) Deoxynivalenol: Toxicity, Mechanisms and Animal Health Risks. Animal Feed Science and Technology, 137, 283-298.
http://dx.doi.org/10.1016/j.anifeedsci.2007.06.006
[49] Eriksen, G.S. and Pettersson, H. (2004) Toxicological Evaluation of Trichothecenes in Animal Feed. Animal Feed Science and Technology, 114, 205-239.
http://dx.doi.org/10.1016/j.anifeedsci.2003.08.008
[50] Sokolovic, M., Garaj-Vrhovac, V. and Simpraga, B. (2008) T-2 Toxin: Incidence and Toxicity in Poultry. Arhiv za Higijenu Rada i Toksikologiju, 59, 43-52.
http://dx.doi.org/10.2478/10004-1254-59-2008-1843
[51] Burck, W.B. and Cote, L.-M. (1991) Trichothecene Mycotoxins. In: Keeler, R.F. and Tu, A.T., Eds., Handbook of Natural Toxins: Toxicology of Plant and Fungal Compounds, Marcel Dekker, New York, 523-555.
[52] Wannemacher Jr., R.W., Bunner, D.L. and Neufeld, H.A. (1991) Toxicity of Trichothecenes and Other Related Mycotoxins in Laboratory Animals. In: Smith, J.E. and Henderson, R.S., Ed., Mycotoxins and Animal Foods, CRC Press, Boca Raton, 499-552.
[53] Zhou, H.-R., Islam, Z. and Pestka, J.J. (2005) Induction of Competing Apoptotic and Survival Signaling Pathways in the Macrophage by the Ribotoxic Trichothecene Deoxynivalenol. Toxicological Sciences, 87, 113-122.
http://dx.doi.org/10.1093/toxsci/kfi234
[54] Sergent, T., Parys, M., Garsou, S., Pussemier, L., Schneider, Y.-J. and Larondelle, Y. (2006) Deoxynivalenol Transport across Human Intestinal Caco-2 Cells and Its Effects on Cellular Metabolism at Realistic Intestinal Concentrations. Toxicology Letters, 164, 167-176.
http://dx.doi.org/10.1016/j.toxlet.2005.12.006
[55] Kankkunen, P., Rintahaka, J., Aalto, A., Leino, M., Majuri, M.L., Alenius, H., Wolff, H. and Matikainen, S. (2009) Trichothecene Mycotoxins Activate Inflammatory Response in Human Macrophages. The Journal of Immunology, 182, 6418-6425.
http://dx.doi.org/10.4049/jimmunol.0803309
[56] Ammann, H.M. (2003) Is Indoor Mold Contamination a Threat to Health? Part Two. Journal of Environmental Health, 66, 47-49.
[57] Nielsen, K.F. (2003) Mycotoxin Production by Indoor Molds. Fungal Genetics and Biology, 39, 103-117.
http://dx.doi.org/10.1016/S1087-1845(03)00026-4
[58] Sudakin, D.L. (2003) Trichothecenes in the Environment: Relevance to Human Health. Toxicology Letters, 143, 97- 107.
http://dx.doi.org/10.1016/S0378-4274(03)00116-4
[59] Middlebrook, J.L. and Leatherman, D.L. (1989) Binding of T-2 Toxin to Eukaryotic Cell Ribosomes. Biochemical Pharmacology, 38, 3103-3110.
http://dx.doi.org/10.1016/0006-2952(89)90021-X
[60] Ueno, Y., Iijima, K., Wang, S.D., Sugiura, Y., Sekijima, M., Tanaka, T., Chen, C. and Yu, S.Z. (1997) Fumonisins as a Possible Contributory Risk Factor for Primary Liver Cancer: A 3-Year Study of Corn Harvested in Haimen, China, by HPLC and ELISA. Food and Chemical Toxicology, 35, 1143-1150.
http://dx.doi.org/10.1016/S0278-6915(97)00113-0
[61] Bae, H.K., Shinozuka, J., Islam, Z. and Pestka, J.J. (2009) Satratoxin G Interaction with 40S and 60S Ribosomal Subunits Precedes Apoptosis in the Macrophage. Toxicology and Applied Pharmacology, 237, 137-145.
http://dx.doi.org/10.1016/j.taap.2009.03.006
[62] Islam, Z., Amuzie, C.J., Harkema, J.R. and Pestka, J.J. (2007) Neurotoxicity and Inflammation in the Nasal Airways of Mice Exposed to the Macrocyclic Trichothecene Mycotoxin Roridin A: Kinetics and Potentiation by Bacterial Lipopolysaccharide Coexposure. Toxicological Sciences, 98, 526-541.
http://dx.doi.org/10.1093/toxsci/kfm102
[63] Laskin, J.D., Heck, D.E. and Laskin, D.L. (2002) The Ribotoxic Stress Response as a Potential Mechanism for MAP Kinase Activation in Xenobiotic Toxicity. Toxicological Sciences, 69, 289-291.
http://dx.doi.org/10.1093/toxsci/69.2.289
[64] Pestka, J.J. (2008) Mechanisms of Deoxynivalenol-Induced Gene Expression and Apoptosis. Food Additives & Contaminants: Part A Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, 1128-1140.
[65] Anli, E. and Alkis, I.M. (2010) Ochratoxin A and Brewing Technology: A Review. Journal of the Institute of Brewing, 116, 23-32.
http://dx.doi.org/10.1002/j.2050-0416.2010.tb00394.x
[66] Varga, J., Kocsube, S., Peteri, Z., Vagvolgyi, C. and Toth, B. (2010) Chemical, Physical and Biological Approaches to Prevent Ochratoxin Induced Toxicoses in Humans and Animals. Toxins (Basel), 2, 1718-1750.
http://dx.doi.org/10.3390/toxins2071718
[67] Li, S., Marquardt, R.R., Frohlich, A.A., Vitti, T.G. and Crow, G. (1997) Pharmacokinetics of Ochratoxin A and Its Metabolites in Rats. Toxicology and Applied Pharmacology, 145, 82-90.
http://dx.doi.org/10.1006/taap.1997.8155
[68] Reddy, L. and Bhoola, K. (2010) Ochratoxins-Food Contaminants: Impact on Human Health. Toxins (Basel), 2, 771-779.
http://dx.doi.org/10.3390/toxins2040771
[69] Van Der Merwe, K.J., Steyn, P.S., Fourie, L., Scott, D.B. and Theron, J.J. (1965) Ochratoxin A, a Toxic Metabolite Produced by Aspergillus ochraceus Wilh. Nature, 205, 1112-1113.
http://dx.doi.org/10.1038/2051112a0
[70] Petzinger, E. and Ziegler, K. (2000) Ochratoxin A from a Toxicological Perspective. Journal of Veterinary Pharmacology and Therapeutics, 23, 91-98.
http://dx.doi.org/10.1046/j.1365-2885.2000.00244.x
[71] Dirheimer, G. and Creppy, E.E. (1991) Mechanism of Action of Ochratoxin A. IARC Scientific Publications, 115, 171-186.
[72] Hohler, D. (1998) Ochratoxin A in Food and Feed: Occurrence, Legislation and Mode of Action. Z Ernahrungswiss, 37, 2-12.
[73] Marquardt, R.R. and Frohlich, A.A. (1992) A Review of Recent Advances in Understanding Ochratoxicosis. Journal of Animal Science, 70, 3968-3988.
[74] Meisner, H. and Meisner, P. (1981) Ochratoxin A, an in Vivo Inhibitor of Renal Phosphoenolpyruvate Carboxykinase. Archives of Biochemistry and Biophysics, 208, 146-153.
http://dx.doi.org/10.1016/0003-9861(81)90133-8
[75] Rahimtula, A.D., Bereziat, J.C., Bussacchini-Griot, V. and Bartsch, H. (1988) Lipid Peroxidation as a Possible Cause of Ochratoxin A Toxicity. Biochemical Pharmacology, 37, 4469-4477.
http://dx.doi.org/10.1016/0006-2952(88)90662-4
[76] Hult, K., Plestina, R., Habazin-Novak, V., Radic, B. and Ceovic, S. (1982) Ochratoxin A in Human Blood and Balkan Endemic Nephropathy. Archives of Toxicology, 51, 313-321.
http://dx.doi.org/10.1007/BF00317010
[77] Krogh, P. (1987) Ochratoxin in Foods. In: Krogh, P., Ed., Mycotoxins in Food, Academic Press, London, 97-110.
[78] Puntaric, D., Bosnir, J., Smit, Z., Skes, I. and Baklaic, Z. (2001) Ochratoxin A in Corn and Wheat: Geographical Association with Endemic Nephropathy. Croatian Medical Journal, 42, 175-180.
[79] Voss, K.A., Smith, G.W. and Haschek, W.M. (2007) Fumonisins: Toxicokinetics, Mechanism of Action and Toxicity. Animal Feed Science and Technology, 137, 299-325.
http://dx.doi.org/10.1016/j.anifeedsci.2007.06.007
[80] Frisvad, J.C., Smedsgaard, J., Samson, R.A., Larsen, T.O. and Thrane, U. (2007) Fumonisin B2 Production by Aspergillus niger. Journal of Agricultural and Food Chemistry, 55, 9727-9732.
http://dx.doi.org/10.1021/jf0718906
[81] Bartok, T., Szecsi, A., Szekeres, A., Mesterhazy, A. and Bartok, M. (2006) Detection of New Fumonisin Mycotoxins and Fumonisin-Like Compounds by Reversed-Phase High-Performance Liquid Chromatography/Electrospray Ionization Ion Trap Mass Spectrometry. Rapid Communications in Mass Spectrometry, 20, 2447-2462.
http://dx.doi.org/10.1002/rcm.2607
[82] Gelderblom, W.C.A., Cawood, M.E, Snyman, S.D., Vleggaar, R. and Marasas, W.F.O. (1993) Structure-Activity Relationships of Fumonisins in Short-Term Carcinogenesis and Cytotoxicity Assays. Food and Chemical Toxicology, 31, 407-414.
http://dx.doi.org/10.1016/0278-6915(93)90155-R
[83] Marasas, W.F. (2001) Discovery and Occurrence of the Fumonisins: A Historical Perspective. Environmental Health Perspectives, 109, 239-243.
[84] Marasas, W.F., Riley, R.T., Hendricks, K.A., Stevens, V.L., Sadler, T.W., Gelineau-van Waes, J., Missmer, S.A., Cabrera, J., Torres, O., Gelderblom, W.C., Allegood, J., Martinez, C., Maddox, J., Miller, J.D., Starr, L., Sullards, M.C., Roman, A.V., Voss, K.A., Wang, E. and Merrill Jr., A.H. (2004) Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and in Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. Journal of Nutrition, 134, 711-716.
[85] Riley, R.T., Wang, E., Schroeder, J.J., Smith, E.R., Plattner, R.D., Abbas, H., Yoo, H.S. and Merrill Jr., A.H. (1996) Evidence for Disruption of Sphingolipid Metabolism as a Contributing Factor in the Toxicity and Carcinogenicity of Fumonisins. Natural Toxins, 4, 3-15.
http://dx.doi.org/10.1002/19960401NT2
[86] Missmer, S.A., Suarez, L., Felkner, M., Wang, E., Merrill Jr., A.H., Rothman, K.J. and Hendricks, K.A. (2006) Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas-Mexico Border. Environmental Health Perspectives, 114, 237-241.
http://dx.doi.org/10.1289/ehp.8221
[87] Fincham, J.E., Marasas, W.F., Taljaard, J.J., Kriek, N.P., Badenhorst, C.J., Gelderblom, W.C., Seier, J.V., Smuts, C.M., Faber, M., Weight, M.J., Slazus, W., Woodroof, C.W., van Wyk, M.J., Marita, K., Thiel, P.G. (1992) Atherogenic Effects in a Non-Human Primate of Fusarium moniliforme Cultures Added to a Carbohydrate Diet. Atherosclerosis, 94, 13-25.
http://dx.doi.org/10.1016/0021-9150(92)90183-H
[88] Kim, Y.T., Lee, Y.R., Jin, J., Han, K.H., Kim, H., Kim, J.C., Lee, T., Yun, S.H. and Lee, Y.W. (2005) Two Different Polyketide Synthase Genes Are Required for Synthesis of Zearalenone in Gibberella zeae. Molecular Microbiology, 58, 1102-1113.
http://dx.doi.org/10.1111/j.1365-2958.2005.04884.x
[89] Glenn, A.E. (2007) Mycotoxigenic Fusarium Species in Animal Feed. Animal Feed Science and Technology, 137, 213-240.
http://dx.doi.org/10.1016/j.anifeedsci.2007.06.003
[90] Hestbjerg, H., Nielsen, K.F., Thrane, U. and Elmholt, S. (2002) Production of Trichothecenes and Other Secondary Metabolites by Fusarium culmorum and Fusarium equiseti on Common Laboratory Media and a Soil Organic Matter Agar: An Ecological Interpretation. Journal of Agricultural and Food Chemistry, 50, 7593-7599.
http://dx.doi.org/10.1021/jf020432o
[91] Mirocha, C.J., Pathre, S.V., Schauerhamer, B. and Christensen, C.M. (1976) Natural Occurrence of Fusarium Toxins in Feedstuff. Applied and Environmental Microbiology, 32, 553-556.
[92] Fink-Gremmels, J. and Malekinejad, H. (2007) Clinical Effects and Biochemical Mechanisms Associated with Exposure to the Mycoestrogen Zearalenone. Animal Feed Science and Technology, 137, 326-341.
http://dx.doi.org/10.1016/j.anifeedsci.2007.06.008
[93] Sekiyama, B.L., Ribeiro, A.B., Machinski, P.A. and Machinski Jr., M. (2005) Aflatoxins, Ochratoxin A and Zearalenone in Maize-Based Food Products. Brazilian Journal of Microbiology, 36, 289-294.
http://dx.doi.org/10.1590/S1517-83822005000300016
[94] Danicke, S., Swiech, E., Buraczewska, L. and Ueberschar, K.H. (2005) Kinetics and Metabolism of Zearalenone in Young Female Pigs. Journal of Animal Physiology and Animal Nutrition (Berl), 89, 268-276.
http://dx.doi.org/10.1111/j.1439-0396.2005.00516.x
[95] Saenz de Rodriguez, C.A., Bongiovanni, A.M. and Conde de Borrego, L. (1985) An Epidemic of Precocious Development in Puerto Rican Children. Journal of Pediatrics, 107, 393-396.
http://dx.doi.org/10.1016/S0022-3476(85)80513-8
[96] Painter, K. (1997) Puberty Signs Evident in 7- and 8-Year Old Girls. USA Today, 8 April, P.A-1.
[97] Meucci, V., Soldani, G., Razzuoli, E., Saggese, G. and Massart, F. (2011) Mycoestrogen Pollution of Italian Infant Food. Journal of Pediatrics, 159, 278-283.
http://dx.doi.org/10.1016/j.jpeds.2011.01.028
[98] Bandera, E.V., Chandran, U., Buckley, B., Lin, Y., Isukapalli, S., Marshall, I., King, M. and Zarbl, H. (2011) Urinary Mycoestrogens, Body Size and Breast Development in New Jersey Girls. Science of the Total Environment, 409, 5221-5227.
http://dx.doi.org/10.1016/j.scitotenv.2011.09.029
[99] Leffers, H., Naesby, M., Vendelbo, B., Skakkebaek, N.E. and Jorgensen, M. (2001) Oestrogenic Potencies of Zeranol, Oestradiol, Diethylstilboestrol, Bisphenol-A and Genistein: Implications for Exposure Assessment of Potential Endocrine Disrupters. Human Reproduction, 16, 1037-1045.
http://dx.doi.org/10.1093/humrep/16.5.1037
[100] Shier, W.T., Shier, A.C., Xie, W. and Mirocha, C.J. (2001) Structure-Activity Relationships for Human Estrogenic Activity in Zearalenone Mycotoxins. Toxicon, 39, 1435-1438.
http://dx.doi.org/10.1016/S0041-0101(00)00259-2
[101] Tiemann, U., Tomek, W., Schneider, F. and Vancelow, J. (2003) Effects of the Mycotoxins α-and β-Zearalenol on Regulation of Progesterone Synthesis in Cultured Granulose Cells from Porcine Ovaries. Reproductive Toxicology, 17, 673-681.
http://dx.doi.org/10.1016/j.reprotox.2003.07.001
[102] Li, S.M., Wang, X.M., Qiu, J., Si, Q., Guo, H.Y., Sun, R.Y. and Wu, Q.X. (2005) Inhibitory Effects of Alpha-Zearalenol on Angiotensin II-Induced Integrin Beta3 mRNA via Suppression of Nuclear Factor-KappaB. Biomedical and Environmental Science, 18, 314-320.
[103] Okafor, N. (2007) Modern Industrial Microbiology and Bitechnology. Science Publishers, Enfield.
[104] Panaccione, D.G. and Coyle, C.M. (2005) Abundant Respirable Ergot Alkaloids from the Common Airborne Fungus Aspergillus fumigatus. Applied and Environmental Microbiology, 71, 3106-3111.
http://dx.doi.org/10.1128/AEM.71.6.3106-3111.2005
[105] Schardl, C.L., Blankenship, J.D., Spierin, M.J. and Machado, C. (2004) Loline and Ergot Alkaloids in Grass Endo-Phytes. In: An, Z., Ed., Handbook of Industrial Mycology, Marcel Dekker, New York, 427-448.
[106] Bacon, C.W., Porter, J.K. and Robbins, J.D. (1979) Laboratory Production of Ergot Alkaloids by Species of Balansia. Journal of General Microbiology, 113, 119-126.
http://dx.doi.org/10.1099/00221287-113-1-119
[107] Kozlovsky, A.G., Zhelifonova, V.P. and Antipova, T.V. (2005) The Fungus Penicillium citrinum, Isolated from Permafrost Sediments, as a Producer of Ergot Alkaloids and New Quinoline Alkaloids Quinocitrinines. Applied Biochemistry and Microbiology, 41, 499-502.
http://dx.doi.org/10.1007/s10438-005-0090-9
[108] Scott, P.M. (2009) Ergot Alkaloids: Extent of Human and Animal Exposure. World Mycotoxin Journal, 2, 141-149.
http://dx.doi.org/10.3920/WMJ2008.1109
[109] Rigbers, O. and Li, S.M. (2008) Ergot Alkaloid Biosynthesis in Aspergillus fumigatus: Overproduction and Biochemical Characterization of a 4-Dimethylallyltryptophan N-Methyltransferase. The Journal of Biological Chemistry, 283, 26859-26868.
http://dx.doi.org/10.1074/jbc.M804979200
[110] Machado, C. (2004) Studies of Ergot Alkaloid Biosynthesis Genes in Clavicipitaceous Fungi. Ph.D. Thesis, University of Kentucky, Kentucky.
[111] de Groot, A.N., van Dongen, P.W., Vree, T.B., Hekster, Y.A. and van Roosmalen, J. (1998) Ergot Alkaloids. Current Status and Review of Clinical Pharmacology and Therapeutic Use Compared with Other Oxytocics in Obstetrics and Gynaecology. Drugs, 56, 523-535.
[112] Bennett, J.W. and Bentley, R. (1999) Pride and Prejudice: The Story of Ergot. Perspectives in Biology and Medicine, 42, 333-355.
[113] Silberstein, S.D. and McCrory, D.C. (2003) Ergotamine and Dihydroergotamine: History, Pharmacology, and Efficacy. Headache, 43, 144-166.
http://dx.doi.org/10.1046/j.1526-4610.2003.03034.x
[114] Manabe, M. (2001) Fermented Foods and Mycotoxins. Mycotoxins, 51, 25-28.
http://dx.doi.org/10.2520/myco.51.25
[115] Blanc, P.J., Loret, M.O. and Goma, G. (1995) Production of Citrinin by Various Species of Monascus. Biotechnology Letters, 17, 291-294.
http://dx.doi.org/10.1007/BF01190639
[116] Pattanagul, P., Pinthong, R., Phianmongkhol, A. and Tharatha, S. (2008) Mevinolin, Citrinin and Pigments of Adlay Angkak Fermented by Monascus sp. International Journal of Food Microbiology, 126, 20-23.
http://dx.doi.org/10.1016/j.ijfoodmicro.2008.04.019
[117] Shimizu, T., Kinoshita, H., Ishihara, S., Sakai, K., Nagai, S. and Nihira, T. (2005) Polyketide Synthase Gene Responsible for Citrinin Biosynthesis in Monascus purpureus. Applied and Environmental Microbiology, 71, 3453-3457.
http://dx.doi.org/10.1128/AEM.71.7.3453-3457.2005
[118] Kumar, M., Dwivedi, P., Sharma, A., Singh, N. and Patil, R. (2007) Ochratoxin A and Citrinin Nephrotoxicity in New Zealand White Rabbits: An Ultrastructural Assessment. Mycopathologia, 163, 21-30.
http://dx.doi.org/10.1007/s11046-006-0079-9
[119] Chagas, G.M., Oliveira, M.B.M., Campello, A.P. and Kluppel, M.L.W. (1995) Mechanism of Citrinin-Induced Dysfunction of Mitochondria. IV—Effect on Ca2+ Transport. Cell Biochemistry and Function, 13, 53-59.
http://dx.doi.org/10.1002/cbf.290130110
[120] Puel, O., Galtier, P. and Oswald, I. (2010) Biosynthesis and Toxicological Effects of Patulin. Toxins, 2, 613-631.
http://dx.doi.org/10.3390/toxins2040613
[121] Wagener, R.E., Davis, N.D. and Diener, U.L. (1980) Penitrem A and Roquefortine Production by Penicillium commune. Applied and Environmental Microbiology, 39, 882-887.
[122] Moulé, Y., Jemmali, M. and Darracq, N. (1978) Inhibition of Protein Synthesis by PR Toxin, a Mycotoxin from Penicillium roqueforti. FEBS Letters, 88, 341-344.
http://dx.doi.org/10.1016/0014-5793(78)80207-5
[123] Wei, R.D., Lee, W.Y.H. and Wei, Y.H. (1985) Some Bio-Chemical Responses to PR toxin, a Mycotoxin from Penicillium roqueforti. In: Lacey, J., Ed., Trichothecense and Other Mycotoxins, John Wiley & Sons, Inc., New York, 337-348.
[124] Duran, R.M., Cary, J.W. and Calvo, A.M. (2007) Production of Cyclopiazonic Acid, Aflatrem, and Aflatoxin by Aspergillus flavus Is Regulated by veA, a Gene Necessary for Sclerotial Formation. Applied Microbiology and Biotechnology, 73, 1158-1168.
http://dx.doi.org/10.1007/s00253-006-0581-5
[125] Gupta, S., Krasnoff, S., Underwood, N., Renwick, J.A.A. and Roberts, D. (1991) Isolation of Beauvericin as an Insect Toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia, 115, 185-189.
http://dx.doi.org/10.1007/BF00462223
[126] Logrieco, A., Moretti, A., Castella, G., Kostecki, M., Golinski, P., Ritieni, A. and Chelkowski, J. (1998) Beauvericin Production by Fusarium Species. Applied and Environmental Microbiology, 64, 3084-3088.
[127] Tomoda, H., Huang, X.H., Cao, J., Nishida, H., Nagao, R., Okuda, S., Tanaka, H., Omura, S., Arai, H. and Inoue, K. (1992) Inhibition of Acyl-CoA: Cholesterol Acyltransferase Activity by Cyclodepsipeptide Antibiotics. The Journal of Antibiotics, 45, 1626-1632.
http://dx.doi.org/10.7164/antibiotics.45.1626
[128] Calo, L., Fornelli, F., Ramires, R., Nenna, S., Tursi, A., Caiaffa, M.F. and Macchia, L. (2004) Cytotoxic Effects of the Mycotoxin Beauvericin to Human Cell Lines of Myeloid Origin. Pharmacological Research, 49, 73-77.
http://dx.doi.org/10.1016/j.phrs.2003.07.002
[129] Grovel, O., Pouchus, Y., Robiou du Pont, T., Montagu, M., Amzil, Z. and Verbist, J. (2002) Ion TRap MS(n) for Identification of Gliotoxin as the Cytotoxic Factor of a Marine Strain of Aspergillus fumigatus Fresenius. Journal of Microbiological Methods, 48, 171-179.
http://dx.doi.org/10.1016/S0167-7012(01)00321-9
[130] Nieminen, S.M., Maki-Paakkanen, J., Hirvonen, M.R., Roponen, M. and von Wright, A. (2002) Genotoxicity of Gliotoxin, a Secondary Metabolite of Aspergillus fumigatus, in a Battery of Short-Term Test Systems. Mutation Research, 520, 161-170.
http://dx.doi.org/10.1016/S1383-5718(02)00202-4
[131] Kweon, Y.O., Paik, Y.H., Schnabl, B., Qian, T., Lemasters, J.J. and Brenner, D.A. (2003) Gliotoxin-Mediated Apoptosis of Activated Human Hepatic Stellate Cells. Journal of Hepatology, 39, 38-46. http://dx.doi.org/10.1016/S0168-8278(03)00178-8
[132] Kruglov, A.G., Andersson, M.A., Mikkola, R., Roivainen, M., Kredics, L., Saris, N.E.L. and Salkinoja-Salonen, M.S. (2009) Novel Mycotoxin from Acremonium xuviarum Is a Powerful Inhibitor of the Mitochondrial Respiratory Chain Complex III. Chemical Research in Toxicology, 22, 565-573.
http://dx.doi.org/10.1021/tx800317z
[133] Ogawa, H., Nozawa, Y., Rojanavanich, V., Tsuboi, R., Yoshiike, T., Banno, Y., Takahashi, M., Nombela, C., Herreros, E., Garcia-Saez, M.I., Santos, A.I. and Sanchez, M. (1992) Fungal Enzymes in the Pathogenesis of Fungal Infections. Journal of Medical Mycology, 30, 189-196.
http://dx.doi.org/10.1080/02681219280000881
[134] Karkowska-Kuleta, J., Rapala-Kozik, M. and Kozik, A. (2009) Fungi Pathogenic to Humans: Molecular Bases of Virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochemica Polanica, 56, 211-224.
[135] Resnick, S., Pappagianis, D. and McKerrow, J.H. (1987) Proteinase Production by the Parasitic Cycle of the Pathogenic Fungus Coccidioides immitis. Infection and Immunity, 55, 2807-2815.
[136] Macdonald, F. and Odds, F.C. (1983) Virulence for Mice of a Proteinase-Secreting Strain of Candida albicans and a Proteinase-Deficient Mutant. Journal of General Microbiology, 129, 431-438.
[137] Borg, M. and Ruchel, R. (1988) Expression of Extracellular Acid Proteinase by Proteolytic Candida s during Experimental Infection of Oral Mucosa. Infection and Immunity, 56, 626-631.
[138] Samaranayake, Y.H., MacFarlane, T.W., Samaranayake, L.P. and Aitchison, T. (1994) The in Vitro Proteolytic and Saccharolytic Activity of Candida Species Cultured in Human Saliva. Oral Microbiology and Immunology, 9, 229-235.
http://dx.doi.org/10.1111/j.1399-302X.1994.tb00063.x
[139] De Bernardis, F., Agatensi, L., Ross, I.K., Emerson, G.W., Lorenzini, R., Sullivan, P.A. and Cassone, A. (1990) Evidence for a Role for Secreted Aspartate Proteinase of Candida albicans in Vulvovaginal Candidiasis. The Journal of Infectious Diseases, 161, 1276-1283.
http://dx.doi.org/10.1093/infdis/161.6.1276
[140] Schaller, M., Borelli, C., Korting, H.C. and Hube, B. (2005) Hydrolytic Enzymes as Virulence Factors of Candida albicans. Mycoses, 48, 365-377.
http://dx.doi.org/10.1111/j.1439-0507.2005.01165.x
[141] Zaugg, C., Borg-Von Zepelin, M., Reichard, U., Sanglard, D. and Monod, M. (2001) Secreted Aspartic Proteinase Family of Candida tropicalis. Infection and Immunity, 69, 405-412.
http://dx.doi.org/10.1128/IAI.69.1.405-412.2001
[142] Calderone, R., Hube, B. and Naglik, J.R. (2002) Extracellular Hydrolases. In: Calderone, R.A., Ed., Candida and Candidiasis, ASM Press, Washington, 107-122.
[143] Scully, C., el-Kabir, M. and Samaranayake, L.P. (1994) Candida and Oral Candidosis: A Review. Critical Reviews in Oral Biology and Medicine, 5, 125-157.
[144] Lee, J.D. and Kolattukudy, P.E. (1995) Molecular Cloning of the cDNA and Gene for an Elastinolytic Aspartic Proteinase from Aspergillus fumigatus and Evidence of Its Secretion by the Fungus during Invasion of the Host Lung. Infection and Immunity, 63, 3796-3803.
[145] Chen, S.C., Wright, L.C., Golding, J.C. and Sorrell, T.C. (2000) Purification and Characterization of Secretory Phospholipase B, Lysophospholipase and Lysophospholipase/Transacylase from a Virulent Strain of the Pathogenic Fungus Cryptococcus neoformans. Biochemical Journal, 347, 431-439.
[146] Cox, G.M., McDade, H.C., Chen, S.C., Tucker, S.C., Gottfredsson, M., Wright, L.C., Sorrell, T.C., Leidich, S.D., Casadevall, A., Ghannoum, M.A. and Perfect, J.R. (2001) Extracellular Phospholipase Activity Is a Virulence Factor for Cryptococcus neoformans. Molecular Microbiology, 39, 166-175.
http://dx.doi.org/10.1046/j.1365-2958.2001.02236.x
[147] Ghannoum, M.A. (2000) Potential Role of Phospholipases in Virulence and Fungal Pathogenesis. Clinical Microbiology Reviews, 13, 122-143.
http://dx.doi.org/10.1128/CMR.13.1.122-143.2000
[148] Ganendren, R., Carter, E., Sorrell, T., Widmer, F. and Wright, L. (2006) Phospholipase B Activity Enhances Adhesion of Cryptococcus neoformans to a Human Lung Epithelial Cell Line. Microbes and Infection, 8, 1006-1015.
http://dx.doi.org/10.1016/j.micinf.2005.10.018
[149] Neves, R.P., Magalhães, O.M.C., da Silva, M.L., de Souza-Motta, C.M. and de Queiroz, L.A. (2005) Identification and Pathogenicity of Malassezia Species Isolated from Human Healthy Skin and with Macules. Brazilian Journal of Microbiology, 36, 114-117.
http://dx.doi.org/10.1590/S1517-83822005000200003
[150] Olszewski, M.A., Noverr, M.C., Chen, G.H., Toews, G.B., Cox, G.M., Perfect, J.R. and Huffnagle, G.B. (2004) Urease Expression by Cryptococcus neoformans Promotes Microvascular Sequestration, Thereby Enhancing Central Nervous System Invasion. American Journal of Pathology, 164, 1761-1771.
http://dx.doi.org/10.1016/S0002-9440(10)63734-0
[151] Li, K., Yu, J.J., Hung, C.Y., Lehmann, P.F. and Cole, G.T. (2001) Recombinant Urease and Urease DNA of Coccidioides immitis Elicit an Immunoprotective Response against Coccidioidomycosis in Mice. Infection and Immunity, 69, 2878-2887.
http://dx.doi.org/10.1128/IAI.69.5.2878-2887.2001
[152] Rappleye, C.A. and Goldman, W.E. (2006) Defining Virulence Genes in the Dimorphic Fungi. Annual Review of Microbiology, 60, 281-303.
http://dx.doi.org/10.1146/annurev.micro.59.030804.121055
[153] Rodrigues, M.L., Nakayasu, E.S., Oliveira, D.L., Nimrichter, L., Nosanchuk, J.D., Almeida, I.C. and Casadevall, A. (2008) Extracellular Vesicles Produced by Cryptococcus neoformans Contain Protein Components Associated with Virulence. Eukaryotic Cell, 7, 58-67.
http://dx.doi.org/10.1128/EC.00370-07
[154] Gordon, M.A. and Vedder, D.K. (1966) Serologic Tests in Diagnosis and Prognosis of Cryptococcosis. The Journal of the American Medical Association, 197, 961-967.
http://dx.doi.org/10.1001/jama.1966.03110120067016
[155] Jung, W.H. and Kronstad, J.W. (2008) Iron and Fungal Pathogenesis: A Case Study with Cryptococcus neoformans. Cellular Microbiology, 10, 277-284.
http://dx.doi.org/10.1111/j.1462-5822.2007.01077.x
[156] Timmerman, M.M. and Woods, J.P. (1999) Ferric Reduction Is a Potential Iron Acquisition Mechanism for Histoplasma capsulatum. Infection and Immunity, 67, 6403-6408.
[157] Brown, A.J.P., Odds, F.C. and Gow, N.A.R. (2007) Infection-Related Gene Expression in Candida albicans. Current Opinion in Microbiology, 10, 307-313.
http://dx.doi.org/10.1016/j.mib.2007.04.001
[158] Latgé, J.P. (2001) The Pathobiology of Aspergillus fumigatus. Trends in Microbiology, 9, 382-389.
http://dx.doi.org/10.1016/S0966-842X(01)02104-7
[159] Johnson, L. (2008) Iron and Siderophores in Fungal-Host Interactions. Mycological Research, 112, 170-183.
http://dx.doi.org/10.1016/j.mycres.2007.11.012
[160] Nyilasi, I., Papp, T., Takó, M., Nagy, E. and Vágvölgyi, C. (2005) Iron Gathering of Opportunistic Pathogenic Fungi. A Mini Review. Acta Microbiologica et Immunologica Hungarica, 52, 185-197.
http://dx.doi.org/10.1556/AMicr.52.2005.2.4
[161] Lesuisse, E. and Labbe, P. (1994) Reductive Iron Assimilation in Saccharomyces cerevisiae. In: Winkelmann, G. and Winge, D.R., Eds., Metal Ions in Fungi, Marcel Dekker, New York, 149-178.
[162] Neilands, J.B. (1995) Siderophores: Structure and Function of Microbial Iron Transport Compounds. Journal of Biological Chemistry, 270, 26723-26726.
[163] Lesuisse, E., Simon-Casteras, M. and Labbe, P. (1998) Siderophore-Mediated Iron Uptake in Saccharomyces cerevisiae: The SIT1 Gene Encodes a Ferrioxamine B Permease that Belongs to the Major Facilitator Superfamily. Microbiology, 144, 3455-3462.
http://dx.doi.org/10.1099/00221287-144-12-3455
[164] Crowley, D.E., Wang, Y.C., Reid, C.P.P. and Szaniszlo, P.J. (1991) Mechanisms of Iron Acquisition from Siderophores by Microorganisms and Plants. Plant and Soil, 130, 179-198.
http://dx.doi.org/10.1007/BF00011873
[165] Hider, R. (1984) Siderophore Mediated Absorption of Iron. Structure and Bonding, 58, 25-87. http://dx.doi.org/10.1007/BFb0111310
[166] Holzberg, M. and Artis, W.M. (1983) Hydroxamate Siderophore Production by Opportunistic and Systemic Fungal Pathogens. Infection and Immunity, 40, 1134-1139.
[167] Dave, B.P. and Dube, H.C. (2000) Chemical Characterization of Fungal Siderophores. Indian Journal of Experimental Biology, 38, 56-62.
[168] Howard, D.H. (1999) Acquisition, Transport, and Storage of Iron by Pathogenic Fungi. Clinical Microbiology Reviews, 12, 394-404.
[169] van Burik, J.A. and Magee, P.T. (2001) Aspects of Fungal Pathogenesis in Humans. Annual Review of Microbiology, 55, 743-772.
http://dx.doi.org/10.1146/annurev.micro.55.1.743
[170] Petrik, M., Haas, H., Schrettl, M., Helbok, A., Blatzer, M. and Decristoforo, C. (2012) In Vitro and in Vivo Evaluation of Selected 68Ga-Siderophores for Infection Imaging. Nuclear Medicine and Biology, 39, 361-369.
http://dx.doi.org/10.1016/j.nucmedbio.2011.09.012
[171] Schrettl, M., Ibrahim-Granet, O., Droin, S., Huerre, M., Latge, J.P. and Haas, H. (2010) The Crucial Role of the Aspergillus fumigatus Siderophore System in Interaction with Alveolar Macrophages. Microbes and Infection, 12, 1035-1041.
http://dx.doi.org/10.1016/j.micinf.2010.07.005
[172] Johnson, L. (2008) Iron and Siderophores in Fungal-Host Interactions. Mycological Research, 112, 170-183.
http://dx.doi.org/10.1016/j.mycres.2007.11.012
[173] Blatzer, M., Schrettl, M., Sarg, B., Lindner, H.H., Pfaller, K. and Haas, H. (2011) SidL, an Aspergillus fumigatus Transacetylase Involved in Biosynthesis of the Siderophores Ferricrocin and Hydroxyferricrocin. Applied and Environmental Microbiology, 77, 4959-4966.
http://dx.doi.org/10.1128/AEM.00182-11
[174] Haas, H., Eisendle, M. and Turgeon, B.G. (2008) Siderophores in Fungal Physiology and Virulence. Annual Review of Phytopathology, 46, 149-187.
http://dx.doi.org/10.1146/annurev.phyto.45.062806.094338
[175] Howard, D.H., Rafie, R., Tiwari, A. and Faull, K.F. (2000) Hydroxamate Siderophores of Histoplasma capsulatum. Infection and Immunity, 68, 2338-2343.
http://dx.doi.org/10.1128/IAI.68.4.2338-2343.2000
[176] Schrettl, M., Bignell, E., Kragl, C., Joechl, C., Rogers, T., Arst Jr., H.N., Haynes, K. and Haas, H. (2004) Siderophore Biosynthesis but not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. Journal of Experimental Medicine, 200, 1213-1219.
http://dx.doi.org/10.1084/jem.20041242
[177] Yasmin, S., Alcazar-Fuolib, L., Gründlingera, M., Puempelc, T., Cairnsb, T., Blatzera, M., Lopezd, J.F., Grimaltd, J.O., Bignellb, E. and Haas, H. (2012) Mevalonate Governs Interdependency of Ergosterol and Siderophore Biosyntheses in the Fungal Pathogen Aspergillus fumigatus. Proceedings of the National Academy of Sciences of the United States of America, 109, E497-E504.
http://dx.doi.org/10.1073/pnas.1106399108
[178] Eisendle, M., Oberegger, H., Zadra, I. and Haas, H. (2003) The Siderophore System Is Essential for Viability of Aspergillus nidulans: Functional Analysis of Two Genes Encoding L-Ornithine N5-Monooxygenase (sidA) and a Non-Ribosomal Peptide Synthetase (sidC). Molecular Microbiology, 49, 359-375.
http://dx.doi.org/10.1046/j.1365-2958.2003.03586.x
[179] Winkelmann, G. (1992) Structures and Functions of Fungal Siderophores Containing Hydroxamate and Complexone Type Iron Binding Ligands. Mycological Research, 96, 529-534.
http://dx.doi.org/10.1016/S0953-7562(09)80976-3
[180] van der Helm, D. and Winkelmann, G. (1994) Hydroxamates and Polycarboxylates as Iron Transport Agents (Siderophores) in Fungi. In: Winkelmann, G. and Winge, D.R., Eds., Metal Ions in Fungi, Marcel Dekker, Inc., New York, 39-98.
[181] Winkelmann, G. (1990) Structural and Stereochemical Aspects of Iron Transport in Fungi. Biotechnology Advances, 8, 207-231.
http://dx.doi.org/10.1016/0734-9750(90)90013-2
[182] van der Helm, D., Jalal, M.A.F. and Hossain, M.B. (1987) The Crystal Structures, Conformations and Configurations of Siderophores. In: Inkelmann, G., van der Helm, D. and Neilands, J.B., Eds., Iron Transport in Microbes, Plants and Animals, VCH, Weinheim, 135-165.
[183] Burt, W.R. (1982) Identification of Coprogen B and Its Breakdown Products from Histoplasma capsulatum. Infection and Immunity, 35, 990-996.
[184] Frederick, C.B., Szaniszlo, P.J., Vickrey, P.E., Bentley, M.D. and Shive, W. (1981) Production and Isolation of Siderophores from the Soil Fungus Epicoccum purpurescens. Biochemistry, 20, 2432-2436.
http://dx.doi.org/10.1021/bi00512a010
[185] Leong, S.A. and Winkelmann, G. (1998) Molecular Biology of Iron Transport in Fungi. In: Sigel, A. and Sigel, H., Eds., Metal Ions in Biological Systems, Marcel Dekker, New York, 147-186.
[186] Burt, W.R. (1983) Isolation of Hydroxamic Acids from Blastomyces dermatitidis. Abstracts of the Annual Meeting of the American Society for Microbiology, abstr. Washington, American Society for Microbiology, F17, 385.
[187] Crichton, R.R. (1991) Inorganic Biochemistry of Iron Metabolism. Ellis Horwood, Chichester.
[188] Mor, H., Kashman, Y., Winkelmann, G. and Barash, I. (1992) Characterization of Siderophores Produced by Different Species of the Dermatophytic Fungi Microsporum and Trichophyton. Biometals, 5, 213-216.
http://dx.doi.org/10.1007/BF01061220
[189] Bentley, M.D., Anderegg, R.J., Szaniszlo, P.J. and Davenport, R.F. (1986) Isolation and Identification of the Principal Siderophore of the Dermatophyte Microsporum gypseum. Biochemistry, 25, 1455-1457.
http://dx.doi.org/10.1021/bi00354a040
[190] Drechsel, H., Metzger, J., Freund, S., Jung, G., Boelaert. J. and Winkelmann, G. (1991) Rhizoferrin—A Novel Siderophore from the Fungus Rhizopus microsporus var. rhizopodiformis. Biology of Metals, 4, 238-243.
http://dx.doi.org/10.1007/BF01141187
[191] Drechsel, H., Tschierske, M., Thieken, A., Jung, G., Zähner, H. and Winkelmann, G. (1995) The Carboxylate Type Siderophore Rhizoferrin and Its Analogs Produced by Directed Fermentation. Journal of Industrial Microbiology, 14, 105-112.
http://dx.doi.org/10.1007/BF01569891
[192] Brakhage, A.A. and Liebmann, B. (2005) Aspergillus fumigatus Conidial Pigment and cAMP Signal Transduction: Significance for Virulence. Medical Mycology, 43, S75-S82.
http://dx.doi.org/10.1080/13693780400028967
[193] Henson, J.M., Butler, M.J. and Day, A.W. (1999) The Dark Side of the Mycelium: Melanins of Phytopathogenic Fungi. Annual Review of Phytopathology, 37, 447-471.
http://dx.doi.org/10.1146/annurev.phyto.37.1.447
[194] Jacobson, E.S. (2000) Pathogenic Roles for Fungal Melanins. Clinical Microbiology Reviews, 13, 708-717.
http://dx.doi.org/10.1128/CMR.13.4.708-717.2000
[195] Bell, A.A. and Wheeler, M.H. (1986) Biosynthesis and Functions of Fungal Melanins. Annual Review of Phytopathology, 24, 411-451.
http://dx.doi.org/10.1146/annurev.py.24.090186.002211
[196] Haase, G. and Brakhage, A.A. (2004) Melanized Fungi Infecting Humans: Function of Melanin as a Pathogenicity Factor. In: Domer, J.E. and Kobayashi, G.S., Eds., The Mycota: Human Fungal Pathogens, Springer, XII, Berlin, 67-87.
http://dx.doi.org/10.1007/978-3-662-10380-7_4
[197] Hamilton, A.J. and Gomez, B.L. (2002) Melanins in Fungal Pathogens. Journal of Medical Microbiology, 51, 189-191.
[198] Butler, J.M. and Day, A.W. (1998) Fungal Melanins: A Review. Canadian Journal of Microbiology, 44, 1115-1136.
http://dx.doi.org/10.1139/w98-119
[199] Jacobson, E.S. and Ikeda, R. (2005) Effect of Melanization upon Porosity of the Cryptococcal Cell Wall. Medical Mycology, 43, 327-333.
http://dx.doi.org/10.1080/13693780412331271081
[200] Romero-Martinez, R., Wheeler, M., Guerrero-Plata, A., Rico, G. and Torres-Guerrero, H. (2000) Biosynthesis and Function of Melanin in Sporothrix schenckii. Infection and Immunity, 68, 3696-3703.
http://dx.doi.org/10.1128/IAI.68.6.3696-3703.2000
[201] Dadachova, E. and Casadevall, A. (2008) Ionizing Radiation: How Fungi Cope, Adapt, and Exploit with the Help of Melanin. Current Opinion in Microbiology, 11, 525-531.
http://dx.doi.org/10.1016/j.mib.2008.09.013
[202] Dadachova1, E., Bryan, R.A., Howell, R.C., Schweitzer, A.D., Aisen, P., Nosanchuk, J.D. and Casadevall, A. (2007) The Radioprotective Properties of Fungal Melanin Are a Function of Its Chemical Composition, Stable Radical Presence and Spatial Arrangement. Pigment Cell & Melanoma Research, 21, 192-199.
http://dx.doi.org/10.1111/j.1755-148X.2007.00430.x
[203] Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, K., Koizumi, S. and Tsuge, T. (1997) The Melanin Biosynthesis Genes of Alternaria alternata Can Restore Pathogenicity of the Melanin Deficient Mutant of Magnaporthe grisea. Molecular Plant-Microbe Interactions, 10, 446-453.
http://dx.doi.org/10.1094/MPMI.1997.10.4.446
[204] Singaravelan, N., Grishkan, I., Beharav, A., Wakamatsu, K., Ito, S. and Nevo, E. (2008) Adaptive Melanin Response of the Soil Fungus Aspergillus niger to UV Radiation Stress at ‘‘Evolution Canyon’’, Mount Carmel, Israel. PLOS ONE, 3, Article ID: e2993.
http://dx.doi.org/10.1371/journal.pone.0002993
[205] Butler, J.M., Day, A.W., Henson, J.M. and Money, N.P. (2001) Pathogenic Properties of Fungal Melanins. Mycologia, 93, 1-8.
http://dx.doi.org/10.2307/3761599
[206] Kuo, M.J. and Alexander, M. (1967) Inhibition of the Lysis of Fungi by Melanins. Journal of Bacteriology, 94, 624-629.
[207] Gunde-Cimerman, N. and Plemenitas, A. (2006) Ecology and Molecular Adaptations of the Halophilic Black Yeast Hortaea werneckii. Reviews in Environmental Science and Biotechnology, 5, 323-331.
http://dx.doi.org/10.1007/s11157-006-9105-0
[208] Gadd, G.M., Gray, D.J. and Newby, P.J. (1990) Role of Melanin in Fungal Biosorption of Tributyltin Chloride. Applied Microbiology and Biotechnology, 34, 116-121.
http://dx.doi.org/10.1007/BF00170934
[209] Babior, B.M. (1978) Oxygen-Dependent Microbial Killing by Phagocytes. The New England Journal of Medicine, 298, 659-668.
http://dx.doi.org/10.1056/NEJM197803232981205
[210] Jacobson, E.S. and Hong, J.D. (1997) Redox Buffering by Melanin and Fe(II) in Cryptococcus neoformans. Journal of Bacteriology, 179, 5340-5346.
[211] Jacobson, E.S. and Emery, H.S. (1991) Catecholamine Uptake, Melanization, and Oxygen Toxicity in Cryptococcus neoformans. Journal of Bacteriology, 173, 401-403.
[212] Jacobson, E.S. and Tinnell, S.B. (1993) Antioxidant Function of Fungal Melanin. Journal of Bacteriology, 175, 7102- 7104.
[213] Wang, Y. and Casadevall, A. (1994) Susceptibility of Melanized and Nonmelanized Cryptococcus neoformans to Nitrogen-and Oxygen-Derived Oxidants. Infection and Immunity, 62, 3004-3007.
[214] Wang, Y., Aisen, P. and Casadevall, A. (1995) Cryptoccus neoformans Melanin and Virulence: Mechanism of Action. Infection and Immunity, 63, 3131-3136.
[215] Rosas, á.L., Nosanchuk, J.D., Feldmesser, M., Cox, G.M., Mcdade, H.C. and Casadevall, A. (2000) Synthesis of Polymerized Melanin by Cryptococcus neoformans in Infected Rodents. Infection and Immunity, 68, 2845-2853.
http://dx.doi.org/10.1128/IAI.68.5.2845-2853.2000
[216] Gómez, B.L., Nosanchuk, J.D., Díez, S., Youngchim, S., Aisen, P., Cano, L.E., Restrepo, A., Casadevall, A. and Hamilton, A.J. (2001) Detection of Melanin-Like Pigments in the Dimorphic Fungal Pathogen Paracoccidioides brasiliensis in Vitro and during Infection. Infection and Immunity, 69, 5760-5767.
http://dx.doi.org/10.1128/IAI.69.9.5760-5767.2001
[217] Morris-Jones, R., Gomez, B.L., Diez, S., Uran, M., Morris-Jones, S.D., Casadevall, A., Nosanchuk, J.D. and Hamilton, A.J. (2005) Synthesis of Melanin Pigment by Candida albicans in Vitro and during Infection. Infection and Immunity, 73, 6147-6150.
http://dx.doi.org/10.1128/IAI.73.9.6147-6150.2005
[218] Ajello, L. (1975) Phaeohyphomycosis: Definition and Etiology. Pan American Health Organization Scientific Publications, 304, 126-133.
[219] Rossmann, S.N., Cernoch, P.L. and Davis, J.R. (1996) Dematiaceous Fungi Are an Increasing Cause of Human Disease. Clinical Infectious Diseases, 22, 73-80.
http://dx.doi.org/10.1093/clinids/22.1.73
[220] McGinnis, M.R., Rinaldi, M.G. and Winn, R.E. (1986) Emerging Agents of Phaeohyphomycosis: Pathogenic Species of Bipolaris and Exserohilum. Journal of Clinical Microbiology, 24, 250-259.
[221] Revankar, S.G. (2007) Dematiaceous Fungi. Mycoses, 50, 91-101.
http://dx.doi.org/10.1111/j.1439-0507.2006.01331.x
[222] Revankar, S.G., Sutton, D.A. and Rinaldi, M.G. (2004) Primary Central Nervous System Phaeohyphomycosis: A Review of 101 Cases. Clinical Infectious Diseases, 38, 206-216.
http://dx.doi.org/10.1086/380635
[223] Nosanchuk, J.D. and Casadevall, A. (2006) Impact of Melanin on Microbial Virulence and Clinical Resistance to Antimicrobial Compounds. Antimicrobial Agents and Chemotherapy, 50, 3519-3528.
http://dx.doi.org/10.1128/AAC.00545-06
[224] Cutler, J.E. and Swatek, F.E. (1969) Pigment Production by Basidiobolus in the Presence of Tyrosine. Mycologia, 60, 130-135.
http://dx.doi.org/10.2307/3757351
[225] da Silva, M.B., Marques, A.F., Nosanchuk, J.D., Casadevall, A., Travassos, L.R. and Taborda, C.P. (2006) Melanin in the Dimorphic Fungal Pathogen Paracoccidioides brasiliensis: Effects on Phagocytosis, Intracellular Resistance and Drug Susceptibility. Microbes and Infection, 8, 197-205.
http://dx.doi.org/10.1016/j.micinf.2005.06.018
[226] Dixon, D.M., Migliozzi, J., Cooper Jr., C.R., Solis, O., Breslin, B. and Szaniszlo, P.J. (1992) Melanized and Non-Melanized Multicellular form Mutants of Wangiella dermatitidis in Mice: Mortality and Histopathology Studies. Mycoses, 35, 17-21.
http://dx.doi.org/10.1111/j.1439-0507.1992.tb00814.x
[227] Jahn, B., Koch, A., Schmidt, A., Wanner, G., Gehringer, H., Bhakdi, S. and Brakhage, A.A. (1997) Isolation and Characterization of a Pigmentless-Conidium Mutant of Aspergillus fumigatus with Altered Conidial Surface and Reduced Virulence. Infection and Immunity, 65, 5110-5117.
[228] Prescott, L.M. (2002) Microbiology. 5th Edition, McGraw-Hill, New York.
[229] Geis, P.A. and Szaniszlo, P. (1984) Carotenoid Pigments of the Dematiaceous Fungus Wangiella dermatitidis. Mycologia, 76, 268-273.
http://dx.doi.org/10.2307/3793103
[230] Schnitzler, N., Peltroche-Llacsahuanga, H., Bestier, N., Zündorf, J., Lütticken, R. and Haase, G. (1999) Effect of Melanin and Carotenoids of Exophiala (Wangiella) dermatitidis on Phagocytosis, Oxidative Burst, and Killing by Human Neutrophils. Infection and Immunity, 67, 94-101.
[231] Dixon, D.M., Polak, A. and Szaniszlo, P.J. (1987) Pathogenicity and Virulence of Wild-Type and Melanin-Deficient Wangiella dermatitidis. Journal of Medical Mycology, 25, 97-106.
http://dx.doi.org/10.1080/02681218780000141
[232] Dixon, D.M., Polak, A. and Conner, G.W. (1989) Mel-Mutants of Wangiella dermatitidis in Mice: Evaluation of Multiple Mouse and Fungal Strains. Journal of Medical Mycology, 27, 335-341. http://dx.doi.org/10.1080/02681218980000451
[233] Tuon, F.F. and Costa, S.F. (2008) Rhodotorula Infection. A Systematic Review of 128 Cases from Literature. Revista Iberoamericana de Micología, 25, 135-140.
http://dx.doi.org/10.1016/S1130-1406(08)70032-9
[234] Chan, G.F., Puad, M.S., Chin, C.F. and Rashid, N.A. (2011) Emergence of Aureobasidium pullulans as Human Fungal Pathogen and Molecular Assay for Future Medical Diagnosis. Folia Microbiologica, 56, 459-467.
http://dx.doi.org/10.1007/s12223-011-0070-9
[235] Clark, E.C., Silver, S.M., Hollick, G.E. and Rinaldi, M.G. (1995) Continuous Ambulatory Peritoneal Dialysis Complicated by Aureobasidium pullulans Peritonitis. American Journal of Nephrology, 15, 353-355.
http://dx.doi.org/10.1159/000168863
[236] Salkin, I.F., Martinez, J.A. and Kemna, M.E. (1986) Opportunistic Infection of the Spleen Caused by Aureobasidium pullulans. Journal of Clinical Microbiology, 23, 828-831.
[237] Niedoszytko, M., Chelminska, M., Jassem, E. and Czestochowska, E. (2007) Association between Sensitization to Aureobasidium pullulans (Pullularia sp) and Severity of Asthma. Annals of Allergy, Asthma & Immunology, 98, 153-156.
http://dx.doi.org/10.1016/S1081-1206(10)60688-6
[238] Pouliot, J.M., Walton, I., Nolen-Parkhouse, M., Abu-Lail, L.I. and Camesano, T.A. (2005) Adhesion of Aureobasidium pullulans Is Controlled by Uronic Acid Based Polymers and Pullulan. Biomacromolecules, 6, 1122-1131.
http://dx.doi.org/10.1021/bm0492935
[239] San-Blas, G. and San-Blas, F. (1977) Paracoccidioides Brasiliensis: Cell Wall Structure and Virulence. A Review. Mycopathologia, 62, 77-86.
http://dx.doi.org/10.1007/BF01259396
[240] Hogan, L.H. and Klein, B.S. (1994) Altered Expression of Surface Alpha-1,3-Glucan in Genetically Related Strains of Blastomyces dermatitidis that Differ in Virulence. Infection and Immunity, 62, 3543-3546.
[241] Klimpel, K.R. and Goldman, W.E. (1988) Cell Walls from a Virulent Variants of Histoplasma capsulatum Lack α-(1-3)-Glucan. Infection and Immunity, 56, 2997-3000.
[242] Liappis, A.P., Kan, V.L., Richman, N.C., Yoon, B., Wong, B. and Simon, G.L. (2008) Mannitol and Inflammatory Markers in the Cerebral Spinal Fluid of HIV-Infected Patients with Cryptococcal Meningitis. European Journal of Clinical Microbiology & Infectious Diseases, 27, 477-479.
http://dx.doi.org/10.1007/s10096-008-0462-1
[243] Wong, B., Perfect, J.R., Beggs, S. and Wright, K.A. (1990) Production of the Hexitol D-Mannitol by Cryptococcus neoformans in Vitro and in Rabbits with Experimental Meningitis. Infection and Immunity, 58, 1664-1670.
[244] Chaturvedi, V., Wong, B. and Newman, S.L. (1996) Oxidative Killing of Cryptococcus neoformans by Human Neutrophils. Evidence that Fungal Mannitol Protects by Scavenging Reactive Oxygen Intermediates. Journal of Immunology, 156, 3836-3840.
[245] Chaturvedi, V., Flynn, T., Niehaus, W.G. and Wong, B. (1996) Stress Tolerance and Pathogenic Potential of a Mannitol Mutant of Cryptococcus neoformans. Microbiology, 142, 937-943.
[246] Weissman, Z. and Kornitzer, D. (2004) A Family of Candida Cell Surface Haem-Binding Proteins Involved in Haemin and Haemoglobin-Iron Utilization. Molecular Microbiology, 53, 1209-1220.
http://dx.doi.org/10.1111/j.1365-2958.2004.04199.x
[247] Sheppard, D.C., Yeaman, M.R., Welch, W.H., Phan, Q.T., Fu, Y., Ibrahim, A.S., Filler, S.G., Zhang, M., Waring, A.J. and Edwards Jr., J.E. (2004) Functional and Structural Diversity in the Als Protein Family of Candida albicans. Journal of Biological Chemistry, 279, 30480-30489.
http://dx.doi.org/10.1074/jbc.M401929200
[248] Klein, B.S., Hogan, L.H. and Jones, J.M. (1993) Immunological Recognition of a 25-Amino Acid Repeat Arrayed in Tandem on a Major Antigen of Blastomyces dermatitidis. The Journal of Clinical Investigation, 92, 330-337.
http://dx.doi.org/10.1172/JCI116571
[249] Almeida, S.R., Unterkircher, C.S. and Camargo, Z.P. (1998) Involvement of the Major Glycoprotein (gp43) of Paracoccidioides brasiliensis in Attachment to Macrophages. Medical Mycology, 36, 405-411. http://dx.doi.org/10.1080/02681219880000641
[250] Van Ho, A., Ward, D.M. and Kaplan, J. (2002) Transition Metal Transport in Yeast. Annual Review of Microbiology, 56, 237-261.
http://dx.doi.org/10.1146/annurev.micro.56.012302.160847
[251] Navarathna, D.H.L.P., Hornby, J.M., Krishnan, N., Parkhurst, A., Duhamel, G.E. and Nickerson, K.W. (2007) Effect of Farnesol on a Mouse Model of Systemic Candidiasis, Determined by Use of a DPP3 Knockout Mutant of Candida albicans. Infection and Immunity, 75, 1609-1618.
[252] Navarathna, D.H.L.P., Nickerson, K.W., Duhamel, G.E., Jerrels, T.R. and Petro, T.M. (2007) Exogenous Farnesol Interferes with the Normal Progression of Cytokine Expression during Candidiasis in a Mouse Model. Infection and Immunity, 75, 4006-4011.
http://dx.doi.org/10.1128/IAI.00397-07
[253] Chiapello, L.S., Baronetti, J.L., Garro, A.P., Spesso, M.F. and Masih, D.T. (2008) Cryptococcus neoformans Glucuro-noxylomannan Induces Macrophage Apoptosis Mediated by Nitric Oxide in a Caspase-Independent Pathway. International Immunology, 20, 1527-1541.
http://dx.doi.org/10.1093/intimm/dxn112
[254] Tucker, S.C. and Casadevall, A. (2002) Replication of Cryptococcus neoformans in Macrophages Is Accompanied by Phagosomal Permeabilization and Accumulation of Vesicles Containing Polysaccharide in the Cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 99, 3165-3170.
http://dx.doi.org/10.1073/pnas.052702799
[255] Ellerbroek, P.M., Lefeber, D.J., van Veghel, R., Scharringa, J., Brouwer, E., Gerwig, G.J., Janbon, G., Hoepelman, A.I. and Coenjaerts, F.E. (2004) O-Acetylation of Cryptococcal Capsular Glucuronoxylomannan Is Essential for Interference with Neutrophil Migration. The Journal of Immunology, 173, 7513-7520.
[256] Villena, S.N., Pinheiro, R.O., Pinheiro, C.S., Nunes, M.P., Takiya, C.M., Dosreis, G.A., Previato, J.O., Mendonca-Previato, L. and Freire-de-Lima, C.G. (2008) Capsular Polysaccharides Galactoxylomannan and Glucuronoxylomannan from Cryptococcus neoformans Induce Macrophage Apoptosis Mediated by Fas Ligand. Cellular Microbiology, 10, 1274-1285.
http://dx.doi.org/10.1111/j.1462-5822.2008.01125.x
[257] Yauch, L.E., Lam, J.S. and Levitz, S.M. (2006) Direct Inhibition of T-Cell Responses by the Cryptococcus Capsular Polysaccharide Glucuronoxylomannan. PLOS Pathogens, 2, 1060-1068.
http://dx.doi.org/10.1371/journal.ppat.0020120
[258] Monari, C., Bistoni, F. and Vecchiarelli, A. (2006) Glucuronoxylomannan Exhibits Potent Immunosuppressive Properties. FEMS Yeast Research, 6, 537-542.
http://dx.doi.org/10.1111/j.1567-1364.2006.00072.x
[259] Lupo, P., Chang, Y.C., Kelsall, B.L., Farber, J.M., Pietrella, D., Vecchiarelli, A., Leon, F. and Kwon-Chung, K.J. (2008) The Presence of Capsule in Cryptococcus neoformans Influences the Gene Expression Profile in Dendritic Cells during Interaction with the Fungus. Infection and Immunity, 76, 1581-1589.
http://dx.doi.org/10.1128/IAI.01184-07
[260] Denning, D.W., Armstrong, R.W., Lewis, B.H. and Stevens, D.A. (1991) Elevated Cerebrospinal Fluid Pressures in Patients with Cryptococcal Meningitis and Acquired Immunodeficiency Syndrome. American Journal of Medicine, 91, 267-272.
http://dx.doi.org/10.1016/0002-9343(91)90126-I
[261] Lyman, C.A., Devi, S.J., Nathanson, J., Frasch, C.E., Pizzo, P.A. and Walsh, T.J. (1995) Detection and Quantitation of the Glucuronoxylomannan-Like Polysaccharide Antigen from Clinical and Nonclinical Isolates of Trichosporon beigelii and Implications for Pathogenicity. Journal of Clinical Microbiology, 33, 126-130.

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.