Share This Article:

Matrix Metalloproteinase MMP-9 Promotes K/BxN Serum Induced Arthritis in Mice

Full-Text HTML XML Download Download as PDF (Size:972KB) PP. 22-28
DOI: 10.4236/ojra.2014.41003    2,385 Downloads   4,060 Views   Citations


Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.

Cite this paper

N. Rajasekaran and H. Illges, "Matrix Metalloproteinase MMP-9 Promotes K/BxN Serum Induced Arthritis in Mice," Open Journal of Rheumatology and Autoimmune Diseases, Vol. 4 No. 1, 2014, pp. 22-28. doi: 10.4236/ojra.2014.41003.


[1] R. C. Lawrence, C. G. Helmick, F. C. Arnett, R. A. Deyo, D. T. Felson and E. H. Giannini, “Estimates of the Prevalence of Arthritis and Selected Musculoskeletal Disorders in the United States,” Arthritis & Rheumatology, Vol. 41, No. 5, 1998, pp. 778-799.<778::AID-ART4>3.0.CO;2-V
[2] C. L. Backman, “Employment and Work Disability in Rheumatoid Arthritis,” Current Opinion in Rheumatology, Vol. 16, No. 2, 2004, pp. 148-152.
[3] U. Muller-Ladner, R. E. Gay and S. Gay, “Molecular Biology of Cartilage and Bone Destruction,” Current Opinion in Rheumatology, Vol. 10, No. 3, 1998, pp. 212-219.
[4] J. S. Mort and C. J. Billington, “Articular Cartilage and Changes in Arthritis: Matrix Degradation,” Arthritis Research & Therapy, Vol. 3, No. 6, 2001, pp. 337-341.
[5] T. H. Vu and Z. Werb, “Matrix Metalloproteinases: Effectors of Development and Normal Physiology,” Genes & Development, Vol. 14, No. 17, 2000, pp. 2123-2133.
[6] J. D. Mott and Z. Werb, “Regulation of Matrix Biology by Matrix Metalloproteinases,” Current Opinion in Cell Biology, Vol. 16, No. 5, 2004, pp. 558-564.
[7] A. Page-Mccaw, A. J. Ewald and Z. Werb, “Matrix Metalloproteinases and the Regulation of Tissue Remodelling,” Nature Reviews Molecular Cell Biology, Vol. 8, No. 3, 2007, pp. 221-233.
[8] M. W. Olson, M. M. Bernardo, M. Pietila, D. C. Gervasi, M. Toth and L. P. Kotra, “Characterization of the Monomeric and Dimeric Forms of Latent and Active Matrix Metalloproteinase-9. Differential Rates for Activation by Stromelysin 1,” Journal of Biological Chemistry, Vol. 275, No. 4, 2000, pp. 2661-2668.
[9] Y. Yoshihara, H. Nakamura, K. Obata, H. Yamada, T. Hayakawa and K. Fujikawa, “Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Synovial Fluids from Patients with Rheumatoid Arthritis or Osteoarthritis,” Annals of the Rheumatic Diseases, Vol. 59, No. 6, 2000, pp. 455-461.
[10] D. Ahrens, A. E. Koch, R. M. Pope, M. Stein-Picarella and M. J. Niedbala, “Expression of Matrix Metalloproteinase 9 (96-Kd Gelatinase B) in Human Rheumatoid Arthritis,” Arthritis & Rheumatology, Vol. 39, No. 9, 1996, pp. 1576-1587.
[11] W. Yoshida, M. Uzuki, J. Nishida, T. Shimamura and T. Sawai, “Examination of in Vivo Gelatinolytic Activity in Rheumatoid Arthritis Synovial Tissue Using Newly Developed in Situ Zymography and Image Analyzer,” Clinical and Experimental Rheumatology, Vol. 27, No. 4, 2009, pp. 587-593.
[12] I. E. Collier, S. M. Wilhelm, A. Z. Eisen, B. L. Marmer, G. A. Grant and J. L. Seltzer, “H-Ras Oncogene-Transformed Human Bronchial Epithelial Cells (Tbe-1) Secrete a Single Metalloprotease Capable of Degrading Basement Membrane Collagen,” Journal of Biological Chemistry, Vol. 263, No. 14, 1988, pp. 6579-6587.
[13] S. M. Wilhelm, I. E. Collier, B. L. Marmer, A. Z. Eisen, G. A. Grant and G. I. Goldberg, “Sv40-Transformed Human Lung Fibroblasts Secrete a 92-Kda Type Iv Collagenase Which Is Identical to That Secreted by Normal Human Macrophages,” Journal of Biological Chemistry, Vol. 264, No. 29, 1989, pp. 17213-17221.
[14] D. V. Jovanovic, J. Martel-Pelletier, J. A. Di Battista, F. Mineau, F. C. Jolicoeur and M. Benderdour, “Stimulation of 92-Kd Gelatinase (Matrix Metalloproteinase 9) Production by Interleukin-17 in Human Monocyte/Macrophages: A Possible Role in Rheumatoid Arthritis,” Arthritis & Rheumatology, Vol. 43, No. 5, 2000, pp. 1134-1144.<1134::AID-ANR24>3.0.CO;2-#
[15] F. Sabeh, D. Fox and S. J. Weiss, “Membrane-Type I Matrix Metalloproteinase-Dependent Regulation of Rheumatoid Arthritis Synoviocyte Function,” Journal of Immunology, Vol. 184, No. 11, 2010, pp. 6396-6406.
[16] L. C. Tetlow, M. Lees, Y. Ogata, H. Nagase and D. E. Woolley, “Differential Expression of Gelatinase B (Mmp-9) and Stromelysin-1 (Mmp-3) by Rheumatoid Synovial Cells in Vitro and in Vivo,” Rheumatology International, Vol. 13, No. 2, 1993, pp. 53-59.
[17] B. L. Gruber, D. Sorbi, D. L. French, M. J. Marchese, G. J. Nuovo and R. R. Kew, “Markedly Elevated Serum Mmp-9 (Gelatinase B) Levels in Rheumatoid Arthritis: A Potentially Useful Laboratory Marker,” Clinical Immunology and Immunopathology, Vol. 78, No. 2, 1996, pp. 161-171.
[18] I. Tchetverikov, H. K. Ronday, B. Van El, G. H. Kiers, N. Verzijl and J. M. Tekoppele, “Mmp Profile in Paired Serum and Synovial Fluid Samples of Patients with Rheumatoid Arthritis,” Annals of the Rheumatic Diseases, Vol. 63, No. 7, 2004, pp. 881-883.
[19] D. L. Asquith, A. M. Miller, I. B. Mcinnes and F. Y. Liew, “Animal Models of Rheumatoid Arthritis,” European Journal of Immunology, Vol. 39, No. 8, 2009, pp. 2040-2044.
[20] P. Monach, K. Hattori, H. Huang, E. Hyatt, J. Morse and L. Nguyen, “The K/Bxn Mouse Model of Inflammatory Arthritis: Theory and Practice,” Methods in Molecular Medicine, Vol. 136, No. 2007, pp. 269-282.
[21] I. Matsumoto, A. Staub, C. Benoist and D. Mathis, “Arthritis Provoked by Linked T and B Cell Recognition of a Glycolytic Enzyme,” Science, Vol. 286, No. 5445, 1999, pp. 1732-1735.
[22] L. Mandik-Nayak and P. M. Allen, “Initiation of an Autoimmune Response: Insights from a Transgenic Model of Rheumatoid Arthritis,” Immunologic Research, Vol. 32, No. 1-3, 2005, pp. 5-13.
[23] H. Ji, K. Ohmura, U. Mahmood, D. M. Lee, F. M. Hofhuis and S. A. Boackle, “Arthritis Critically Dependent on Innate Immune System Players,” Immunity, Vol. 16, No. 2, 2002, pp. 157-168.
[24] K. S. Nandakumar and R. Holmdahl, “Antibody-Induced Arthritis: Disease Mechanisms and Genes Involved at the Effector Phase of Arthritis,” Arthritis Research & Therapy, Vol. 8, No. 6, 2006, p. 223.
[25] C. L. Hickman-Brecks, J. L. Racz, D. M. Meyer, T. P. Labranche and P. M. Allen, “Th17 Cells Can Provide B Cell Help in Autoantibody Induced Arthritis,” Journal of Autoimmunity, Vol. 36, No. 1, 2011, pp. 65-75.
[26] B. T. Wipke and P. M. Allen, “Essential Role of Neutrophils in the Initiation and Progression of a Murine Model of Rheumatoid Arthritis,” Journal of Immunology, Vol. 167, No. 3, 2001, pp. 1601-1608.
[27] S. Kaieda, C. Tomi, S. Oki, T. Yamamura and S. Miyake, “Activation of Invariant Natural Killer T Cells by Synthetic Glycolipid Ligands Suppresses Autoantibody-Induced Arthritis,” Arthritis & Rheumatology, Vol. 56, No. 6, 2007, pp. 1836-1845.
[28] S. Solomon, C. Kolb, S. Mohanty, E. Jeisy-Walder, R. Preyer and V. Schollhorn, “Transmission of Antibody-Induced Arthritis Is Independent of Complement Component 4 (C4) and the Complement Receptors 1 and 2 (Cd21/35),” European Journal of Immunology, Vol. 32, No. 3, 2002, pp. 644-651.<644::AID-IMMU644>3.0.CO;2-5
[29] S. Solomon, N. Rajasekaran, E. Jeisy-Walder, S. B. Snapper and H. Illges, “A Crucial Role for Macrophages in the Pathology of K/B X N Serum-Induced Arthritis,” European Journal of Immunology, Vol. 35, No. 10, 2005, pp. 3064-3073.
[30] J. J. Inglis, E. Simelyte, F. E. Mccann, G. Criado and R. O. Williams, “Protocol for the Induction of Arthritis in C57bl/6 Mice,” Nature Protocols, Vol. 3, No. 4, 2008, pp. 612-618.
[31] A. S. Korganow, H. Ji, S. Mangialaio, V. Duchatelle, R. Pelanda and T. Martin, “From Systemic T Cell Self-Reactivity to Organ-Specific Autoimmune Disease Via Immunoglobulins,” Immunity, Vol. 10, No. 4, 1999, pp. 451-461.
[32] V. Kouskoff, A. S. Korganow, V. Duchatelle, C. Degott, C. Benoist and D. Mathis, “Organ-Specific Disease Provoked by Systemic Autoimmunity,” Cell, Vol. 87, No. 5, 1996, pp. 811-822.
[33] A. Singh, N. Rajasekaran, B. Hartenstein, S. Szabowski, M. Gajda and P. Angel, “Collagenase-3 (Mmp-13) Deficiency Protects C57bl/6 Mice from Antibody-Induced Arthritis,” Arthritis Research & Therapy, Vol. 15, No. 6, 2013, p. R222.
[34] T. Itoh, H. Matsuda, M. Tanioka, K. Kuwabara, S. Itohara and R. Suzuki, “The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis,” Journal of Immunology, Vol. 169, No. 5, 2002, pp. 2643-2647.
[35] B. A. Binstadt, P. R. Patel, H. Alencar, P. A. Nigrovic, D. M. Lee and U. Mahmood, “Particularities of the Vasculature Can Promote the Organ Specificity of Autoimmune Attack,” Nature Immunology, Vol. 7, No. 3, 2006, pp. 284-292.
[36] B. T. Wipke, Z. Wang, W. Nagengast, D. E. Reichert and P. M. Allen, “Staging the Initiation of Autoantibody-Induced Arthritis: A Critical Role for Immune Complexes,” Journal of Immunology, Vol. 172, No. 12, 2004, pp. 7694-7702.
[37] B. T. Wipke, Z. Wang, J. Kim, T. J. Mccarthy and P. M. Allen, “Dynamic Visualization of a Joint-Specific Autoimmune Response through Positron Emission Tomography,” Nature Immunology, Vol. 3, No. 4, 2002, pp. 366-372.
[38] H. Ji, A. Pettit, K. Ohmura, A. Ortiz-Lopez, V. Duchatelle and C. Degott, “Critical Roles for Interleukin 1 and Tumor Necrosis Factor Alpha in Antibody-Induced Arthritis,” Journal of Experimental Medicine, Vol. 196, No. 1, 2002, pp. 77-85.
[39] L. L. Santos, H. Fan, P. Hall, D. Ngo, C. R. Mackay and G. Fingerle-Rowson, “Macrophage Migration Inhibitory Factor Regulates Neutrophil Chemotactic Responses in Inflammatory Arthritis in Mice,” Arthritis & Rheumatology, Vol. 63, No. 4, 2011, pp. 960-970.
[40] C. A. Owen, Z. Hu, B. Barrick and S. D. Shapiro, “Inducible Expression of Tissue Inhibitor of Metalloproteinases-Resistant Matrix Metalloproteinase-9 on the Cell Surface of Neutrophils,” American Journal of Respiratory Cell and Molecular Biology, Vol. 29, No. 3, 2003, pp. 283-294.
[41] G. Giannelli, R. Erriquez, F. Iannone, F. Marinosci, G. Lapadula and S. Antonaci, “Mmp-2, Mmp-9, Timp-1 and Timp-2 Levels in Patients with Rheumatoid Arthritis and Psoriatic Arthritis,” Clinical and Experimental Rheumatology, Vol. 22, No. 3, 2004, pp. 335-338.
[42] H. Sato, T. Takino, Y. Okada, J. Cao, A. Shinagawa and E. Yamamoto, “A Matrix Metalloproteinase Expressed on the Surface of Invasive Tumour Cells,” Nature, Vol. 370, No. 6484, 1994, pp. 61-65.
[43] O. Ishibashi, S. Niwa, K. Kadoyama and T. Inui, “Mmp-9 Antisense Oligodeoxynucleotide Exerts an Inhibitory Effect on Osteoclastic Bone Resorption by Suppressing Cell Migration,” Life Sciences, Vol. 79, No. 17, 2006, pp. 1657-1660.
[44] F. C. Cackowski, J. L. Anderson, K. D. Patrene, R. J. Choksi, S. D. Shapiro and J. J. Windle, “Osteoclasts Are Important for Bone Angiogenesis,” Blood, Vol. 115, No. 1, 2010, pp. 140-149.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.