ACS> Vol.4 No.1, January 2014

Wind Power Potential in Interior Alaska from a Micrometeorological Perspective

DownloadDownload as PDF (Size:6047KB)  HTML    PP. 100-121  

ABSTRACT

The wind power potential in Interior Alaska is evaluated from a micrometeorological perspective. Based on the local balance equation of momentum and the equation of continuity we derive the local balance equation of kinetic energy for macroscopic and turbulent systems, and in a further step, Bernoulli’s equation and integral equations that customarily serve as the key equations in momentum theory and blade-element analysis, where the Lanchester-Betz-Joukowsky limit, Glauert’s optimum actuator disk, and the results of the blade-element analysis by Okulov and Sorensen are exemplarily illustrated. The wind power potential at three different sites in Interior Alaska (Delta Junction, Eva Creek, and Poker Flat) is assessed by considering the results of wind field predictions for the winter period from October 1, 2008, to April 1, 2009 provided by the Weather Research and Forecasting (WRF) model to avoid time-consuming and expensive tall-tower observations in Interior Alaska which is characterized by a relatively low degree of infrastructure outside of the city of Fairbanks. To predict the average power output we use the Weibull distributions derived from the predicted wind fields for these three different sites and the power curves of five different propeller-type wind turbines with rated powers ranging from 2 MW to 2.5 MW. These power curves are represented by general logistic functions. The predicted power capacity for the Eva Creek site is compared with that of the Eva Creek wind farm established in 2012. The results of our predictions for the winter period 2008/2009 are nearly 20 percent lower than those of the Eva Creek wind farm for the period from January to September 2013.

Cite this paper

H. Ross, J. Cooney, M. Hinzman, S. Smock, G. Sellhorst, R. Dlugi, N. Mölders and G. Kramm, "Wind Power Potential in Interior Alaska from a Micrometeorological Perspective," Atmospheric and Climate Sciences, Vol. 4 No. 1, 2014, pp. 100-121. doi: 10.4236/acs.2014.41013.

References

[1] T. Godish, “Air Quality,” Lewis Publishers, Boca Raton, 2004.
[2] F. Dominici, R. D. Peng, M. L. Bell, L. Pham, A. Mc-Dermott, S. L. Zeger and J. M. Samet, “Fine Particulate Air Pollution and Hospital Admission for Cardiovascular and Respiratory Diseases,” JAMA, Vol. 295, No. 10, 2006, pp. 1127-1134. http://dx.doi.org/10.1001/jama.295.10.1127
[3] K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G.L. Anderson and J. D. Kaufman, “Long-Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women,” New England Journal of Medicine, Vol. 356, No. 5, 2007, pp. 447-458. http://dx.doi.org/10.1056/NEJMoa 054409
[4] R. J. Delfino, S. Brummel, J. Wu, H. Stern, B. Ostro, M. Lipsett, A. Winer, D. H. Street, L. Zhang, T. Tjoa and D. L. Gillen, “The Relationship of Respiratory and Cardiovascular Hospital Admissions to the Southern California Wildfires of 2003,” Occupational & Environmental Medicine, Vol. 66, No. 3, 2009, pp. 189-197. http://dx.doi.org/10.1136/oem.2008.041376
[5] J. Schwartz, D. Dockery and L. Neas, “Is Daily Mortality Associated Specifically with Fine Particles?” Journal of the Air & Waste Management Association, Vol. 46, No. 10, 1997, pp. 927-939. http://dx.doi.org/10.1080/10473289.1996.10467528
[6] S. M. Bernard, J. M. Samet, A. Grambsch, K. L. Ebi and I. Romieu, “The Potential Impacts of Climate Variability and Change on Air Pollution Related Health Effects in the United States,” Environmental Health Perspectives, Vol. 109, Suppl. 2, 2001, pp. 199-209.
[7] A. D. Kappos, P. Bruckmann, T. Eikmann, N. Englert, U. Heinrich, P. H?ppe, E. Koch, G. H. M. Krause, W. G. Kreyling, K. Rauchfuss, P. Rombout, V. Schulz-Klemp, W. R. Thiel and H. E. Wichmann, “Health Effects of Particles in the Ambient Air,” International Journal of Hygiene and Environmental Health, Vol. 207, No. 4, 2004, pp. 399-407. http://dx.doi.org/10.1078/1438-4639-00306
[8] H. N. Q. Tran and N. Molders, “Investigations on Meteorological Conditions for Elevated PM2.5 in Fairbanks, Alaska,” Atmospheric Research, Vol. 99, No. 1, 2011, pp. 39-49. http://dx.doi.org/10. 1016/j.atmosres.2010.08.028
[9] Committee on Carbon Monoxide Episodes in Meteorological and Topographical Problem Areas, National Research Council, “The Ongoing Challenge of Managing Carbon Monoxide Pollution in Fairbanks, Alaska,” Interim Report, National Academy of Sciences, 2002.
[10] N. Molders and G. Kramm, “A Case Study on Wintertime Inversions in Interior Alaska with WRF,” Atmospheric Research, Vol. 95, No. 2-3, 2010, pp. 314-332. http://dx.doi.org/10.1016/j.atmosres. 2009.06.002
[11] G. Wendler and M. Shulski, “A Century of Climate Change for Fairbanks, Alaska,” Arctic, Vol. 62, No. 3, 2009, pp. 295-300.
[12] J. Cooney and G. Kramm, “Determining Viable Locations for Wind Farms in Alaska,” NSF REU Site Program in Atmospheric Sciences, University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, 2012.
[13] B. Newton and G. Wyman, “Eva Creek Briefing,” Golden Valley Electrical Association, 2012.
[14] M. Hinzman and G. Kramm, “The Eva Creek Wind Farm project,” NSF REU Site Program in Atmospheric Sciences, University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, 2011.
[15] B. Storm, J. Dudhia, S. Basu, A. Swift and I. Giammanco, “Evaluation of the Weather Research and Forecasting Model on Forecasting Low-Level Jets: Implications for Wind Energy,” Wind Energy, Vol. 12, No. 1, 2009, pp. 81-90. http://dx.doi.org/10.1002/we.288
[16] B. Storm and S. Basu, “The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains,” Energies, Vol. 3, No. 2, 2010, pp. 258-276. http://dx.doi.org/10.3390/ en3020258
[17] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang and J. G. Powers, “A Description of the Advanced Research WRF Version 3,” NCAR Technical Note, NCAR/TN-475+STR, Colorado, 2008.
[18] N. Molders, H. N. Q. Tran, P. Quinn, K. Sassen, G. E. Shaw and G. Kramm, “Assessment of WRF/Chem to Capture Sub-Arctic Boundary Layer Characteristics during Low Solar Irradiation Using Radiosonde, SODAR, and Surface Data,” Atmospheric Pollution Research, Vol. 2, 2011, pp. 283-299.
[19] G. Kramm, G. Sellhorst, H. K. Ross, J. Cooney, R. Dlugi and N. M?lders, “On the Maximum of Wind Power Efficiency,” 2013 (prepared for submission).
[20] N. Molders, H. N. Q. Tran, C. F. Cahill, K. Leelasakultum and T. T. Tran, ”Assessment of WRF/Chem PM2.5-Forecasts Using Mobile and Fixed Location Data from the Fairbanks, Alaska Winter 2008/09 Field Campaign,” Atmospheric Pollution Research, Vol. 3, No. 2, 2012, pp. 180-191.
[21] S. R. de Groot and P. Mazur, “Non-Equilibrium Thermodynamics,” North-Holland Publishing Comp, Amsterdam/ London, 1969.
[22] L. D. Landau and E. M. Lifshitz, “Course of Theoretical Physics-Vol. 6, Fluid Mechanics,” 2nd Edition, Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt, 1987.
[23] O. Reynolds, “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion,” Philosophical Transactions of the Royal Society, Vol. 186, 1895, pp. 123-164.
http://dx.doi.org/10.1098/rsta.1895.0004
[24] G. Kramm and F. X. Meixner, “On the Dispersion of Trace Species in the Atmospheric Boundary Layer: A Re-Formulation of the Governing Equations for the Turbulent Flow of the Compressible Atmosphere,” Tellus, Vol. 52, No. 5, 2000, pp. 500-522. http://dx.doi.org/10.1034/j.1600-0870.2000. 00984.x
[25] R. B. Montgomery, “Convection of Heat,” Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, Vol. 7, No. 1, 1954, pp. 125-132. http://dx.doi.org/10.1007/BF02277911
[26] H. Fortak, “Zur Energetik der Planetarischen Grenzschicht,” Annalen der Meteorologie (NF), Vol. 4, 1969, pp. 157-162.
[27] H. Pichler, “Dynamik der Atmosphare,” Bibliographisches Institut, Zürich, 1984.
[28] G. Cox, “Basic Considerations,” In: G. Cox, Ed., Combustion Fundamentals of Fire, Academic Press, London, San Diego, New York, pp. 3-30.
[29] G. Kramm, R. Dlugi and D. H. Lenschow, “A Re-Evaluation of the Webb-Correction Using Density-Weighted Averages,” Journal of Hydrology, Vol. 166, No. 3-4, 1995, pp. 283-292. http://dx.doi.org/ 10.1016/0022-1694(94)05088-F
[30] D. Thomson, “The Parameterization of the Vertical Dispersion of a Scalar in the Atmospheric Boundary Layer,” Atmospheric Environment, Vol. 29, No. 11, 1995, p. 1343. http://dx.doi.org/10. 1016/1352-2310(94)00326-G
[31] A. Venkatram, “Response,” Atmospheric Environment, Vol. 32, No. 2, 1998, p. 259.
http://dx.doi.org/10.1016/S1352-2310(96)00078-7
[32] A. S. Kowalski, “Exact Averaging of Atmospheric State and Flow Variables,” Journal of the Atmospheric Sciences, Vol. 69, No. 5, 2012, pp. 1750-1757. http://dx.doi.org/10.1175/JAS-D-11-0299.1
[33] T. Hesselberg, “Die Gesetze der Ausgeglichenen Atmospharischen Bewegungen,” Beitr. Phys. fr. Atmosph., Vol. 12, No. 3, 1926, pp. 141-160.
[34] J. van Mieghem, “Les Equations Générales de la Mécanique et de L’Energétique des Milieux Turbulents en vue des Applications à la Météorologie,” Institut Royal Météorologique de Belgique, Belgique., Mém. XXXIV, 1949.
[35] J. van Mieghem, “Atmospheric Energetics,” Clarendon Press, Oxford, 1973.
[36] F. Herbert, “Irreversible Prozesse der Atmosphare-3. Teil (Phanomenolo-gische Theorie Mikroturbulenter Systeme),” Beitr. Phys. Atmosph, Vol. 48, No. 1, 1975, pp. 1-29. (in German).
[37] P. A. Libby and F. A. Williams, “Turbulent Reacting Flows,” Springer-Verlag, Berlin, 1980.
http://dx.doi.org/10.1007/3-540-10192-6
[38] F. Herbert, “A Re-Evaluation of the Webb Correction Using Density-Weighted Averages-Comment,” Journal of Hydrology, Vol. 173, No. 1-4, 1995, pp. 343-344. http://dx.doi.org/10.1016/0022-1694 (95)02867-O
[39] A. Eliassen and E. Kleinschmidt Jr., “Dynamic Meteorology,” In: S. Flügge, Ed., Handbuch der Physik, Bd. XLVIII, Springer-Verlag Berlin, Heidelberg, New York, 1957, pp. 1-154.
[40] J. A. Dutton, “Dynamics of Atmospheric Motion,” Dover, New York, 1995.
[41] J. C. Rotta, “Turbulente Stromungen,” B.G. Teubner, Stuttgart, 1972. http://dx.doi.org/10.1007/978-3-322-91206-0
[42] D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination,” Chelsea Publishing, New York, 1952.
[43] A. Budó, “Theoretische Mechanik,” VEB Deutscher Verlag der Wissenschaften, Germany, 1990.
[44] S. V. Alekseenko, P. A. Kuibin and V. L. Okulov, “Theory of Concentrated Vortices,” Springer, Berlin, Heidelberg, New York, 2007.
[45] J. N. Sorensen, “Aerodynamic Aspects of Wind Energy Conversion,” Annual Review of Fluid Mechanics, Vol. 43, 2011, pp. 427-448.
[46] P. M. Goorjian, “An Invalid Equation in the General Momentum Theory of the Actuator Disk,” AIAA Journal, Vol. 10, No. 4, 1972, pp. 543-544.
[47] R. E. Wilson and P. B. S. Lissaman, “Applied Aerodynamic Performance of Wind Power Machines,” Oregon State University, Corvallis, 1974.
[48] G. A. M. van Kuik, “The Lanchester-Betz-Joukowsky Limit,” Wind Energy, Vol. 10, No. 3, 2007, pp. 289-291.
[49] V. L. Okulov and J. N. S?rensen, “Refined Betz Limit for Rotors with a Finite Number of Blades,” Wind Energy, Vol. 11, No. 4, 2008, pp. 415-426.
[50] A. Betz, “Wind-Energie und Ihre Ausnutzung Durch Windmühlen,” Vandenhoeck & Ruprecht, G?ttingen, 1926.
[51] W. J. M. Rankine, “On the Mechanical Principles of the Action of Propellers,” Transaction of the Institute of Naval Architects, Vol. 6, 1865, pp. 13-39.
[52] W. Froude, “On the Elementary Relation between Pitch, Slip and Propulsive Efficiency,” Transaction of the Institute of Naval Architects, Vol. 19, 1878, pp. 22-33.
[53] R.E. Froude, “On the Part Played in Propulsion by Difference in Pressure,” Transaction of the Institute of Naval Architects, Vol. 30, 1889, pp. 390-405.
[54] H. Snel, “Review of the Present Status of Rotor Aerodynamics,” Wind Energy, Vol. 1, No. S1, 1998, pp. 46-69.
[55] V. L. Okulov and J. N. Sorensen, “Maximum Efficiency of Wind Turbine Rotors Using Joukowsky and Betz Approaches,” Journal of Fluid Mechanics, Vol. 649, 2010, pp. 497-508. http://dx.doi.org/10. 1017/S0022112010000509
[56] S. Mathew, “Wind Energy: Fundamentals, Resource Analysis, and Economics,” Springer, Berlin, Heidelberg, New York, 2006. http://dx.doi.org/10.1007/3-540-30906-3
[57] H. Glauert, “Airplane Propellers,” In: W. F. Durand, Ed., Aerodynamic Theory, Vol. IV, Division L, Springer, New York, 1935, pp. 169-360.
[58] S.-Y. Hong and J.-O. J. Lim, “The WRF Single-Moment 6-Class Microphysics Scheme (WSM6),” Journal of the Korean Meteorological Society, Vol. 42, No. 2, 2006, pp. 129-151.
[59] G. A. Grell and D. Devenyi, “A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques,” Geophysical Research Letters, Vol. 29, No. 14, 1693, pp. 1-4. http://dx.doi.org/10.1029/2002GL015311
[60] E. J. Mlawer, S. J. Taubman, P. D. Brown, P.D., M. J. Iacono and S. A. Clough, “Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Longwave,” Journal of Geophysical Research: Atmospheres, Vol. 102, No. D14, 1997, pp. 16663-16682.
[61] Z. I. Janjic, “Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model,” National Centers for Environmental Prediction (NCEP) Office Note #437, 2002.
[62] T. G. Smirnova, J. M. Brown, S. G. Benjamin and D. Kim, “Parameterization of Cold-Season Processes in the MAPS Land-Surface Scheme,” Journal of Geophysical Research: Atmospheres, Vol. 105, No. D3, 2000, pp. 4077-4086.
[63] W. R. Stockwell, P. Middleton, J. S. Chang and X. Tang, “The Second Generation Regional Acid Deposition Model Chemical Mechanism for Regional Air Quality Modeling,” Journal of Geophysical Research: Atmospheres, Vol. 95, No. D10, 1990, pp. 16343-16367.
[64] S. Madronich, “Photodissociation in the Atmosphere. 1. Actinic Flux and the Effects of Ground Reflections and Clouds,” Journal of Geophysical Research: Atmospheres, Vol. 92, No. D8, pp. 9740-9752.
[65] M. L. Wesely, “Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional Scale Numerical Models,” Atmospheric Environment, Vol. 23, No. 6, 1989, pp. 1293-1304.
[66] I. J. Ackermann, H. Hass, M. Memmesheimer, A. Ebel, F. S. Binkowski and U. Shankar, “Modal Aerosol Dynamics Model for Europe: Development and First Applications,” Atmospheric Environment, Vol. 32, No. 17, 1998, pp. 2981-2999.
[67] B. Schell, I. J. Ackermann, H. Hass, F. S. Binkowski and A. Ebel, “Modeling the Formation of Secondary Organic Aerosol within a Comprehensive Air Quality Model System,” Journal of Geophysical Research: Atmospheres, Vol. 106, No. D22, pp. 28275-28293.
[68] H. Ross and G. Kramm, “An Assessment of Wind Power Potential for Interior Alaska,” NSF REU Site Program in Atmospheric Sciences, University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, 2012.
[69] Z. Zhao, S. H. Chen, M. J. Kleeman, M. Tyree and D. Cayan, “The Impact of Climate Change on Air Quality-Related Meteorological Conditions in California. Part I: Present Time Simulation Analysis,” Journal of Climate, Vol. 24, No. 13, 2011, pp. 3344-3361.
[70] W. Weibull, “A Statistical Distribution Function of Wide Applicability,” Journal of Applied Mechanics, Vol. 18, 1951, pp. 293-297.
[71] C. G. Justus, W. R. Hargraves and A. Yalcin, “Nationwide Assessment of Potential Output from Wind-Powered Generators,” Journal of Applied Meteorology, Vol. 15, No. 7, 1976, pp. 673-678.
[72] K. Ulgen and A. Hepbasli, “Determination of Weibull Parameters for Wind Energy Analysis of Izmir, Turkey,” International Journal of Energy Research, Vol. 26, No. 6, 2002, pp. 495-506.
http://dx.doi.org/10.1002/er.798
[73] G. J. Haltiner and F. L. Martin, “Dynamical and Physical Meteorology,” McGraw-Hill Book Company, New York, Toronto, London, 1957.
[74] S. Pal Arya, “Introduction to Micrometeorology,” Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto, 1988.
[75] H. A. Panofsky, “Determination of Stress from Wind and Temperature Measurements,” Quarterly Journal of the Royal Meteorological Society, Vol. 89, No. 379, 1963, pp. 85-94.
[76] G. Kramm and F. Herbert, “Similarity Hypotheses for the Atmospheric Surface Layer Expressed by Dimensional π Invariants Analysis—A Review,” The Open Atmospheric Science Journal, Vol. 3, 2009, pp. 48-79.
[77] G. Kramm, D. J. Amaya, T. Foken and N. M?lders, “Hans A. Panofsky’s Integral Similarity Function—At Fifty,” Atmospheric and Climate Sciences, Vol. 3, 2013, pp. 581-594.
[78] A. S. Monin and A. M. Obukhov, “Osnovnye Zakonomernosti Turbulentnogo Pereme?ivanija v Prizemnom Sloe Atmosfery,” Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, Vol. 24, No. 151, 1954, pp. 163-187.
[79] S. Smock and G. Kramm, “Power-Law and Logarithmic Wind Profiles: A Synthesis,” NSF REU Site Program in Atmospheric Sciences, University of Alaska Fairbanks, Geophysical Institute, Fairbanks, Alaska, 2011.
[80] Y.-H. Wan, “Wind Power Plant Behaviors: Analyses of Long-Term Wind Power Data,” National Renewable Energy Laboratory, Technical Report NREL/TP-500-36551, 2004.
[81] M. A. Ortega-Vazquez and D. S. Kirschen, “Estimating the Spinning Reserve Requirements in Systems with Significant Wind Power Generation Penetration,” IEEE Transactions on Power Systems, Vol. 24, No. 1, 2009, pp. 114-124.
[82] J. Sloan, “A Limit on Wind Power,” Fairbanks Daily News-Miner, 2013. (Community Perspective) http://www.newsminer.com/opinion/community_perspectives/a-limit-on-wind-power/article_54f7fdd0-3962-11e3-900f-0019bb30f31a.html

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.