ICESat-Derived Elevation Changes on the Lena Delta and Laptev Sea, Siberia

Download Download as PDF (Size:6767KB)  HTML   XML  PP. 1-9  


We employ elevation data from the Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter
System (GLAS) to investigate surface changes across the Lena Delta and sea ice of the coastal Laptev Sea, Siberia
during winters of 2003 through 2008. We compare ICESat GLAS-derived elevation changes on sea ice and
the Bykovskaya and Sardakhskaya Channels with datum-corrected tide gauge height measurements from Danai,
Sannikova and Tiksi stations. We find the coastal sea ice and large inland ice covered channels elevation changes
are in phase with the tide-height changes on a same month-year and datum-controlled basis. Furthermore, we
find elevation change on tundra drained lake basins to be +0.03 ± 0.02 m, on average. These findings indicate
that ICESat GLAS is capable of detection of tide fluxes of ice covered coastal rivers, and with a small error
range, it is suitable for investigations of active-layer and permafrost dynamics associated with seasonal freezing
(heave) and thawing (subsidence) using repeat-location profiles.

Cite this paper

R. Muskett, "ICESat-Derived Elevation Changes on the Lena Delta and Laptev Sea, Siberia," Open Journal of Modern Hydrology, Vol. 4 No. 1, 2014, pp. 1-9. doi: 10.4236/ojmh.2014.41001.


[1] R. R. Muskett and V. E. Romanovsky, “Energy and Mass Changes of the Eurasian Permafrost Regions by Multi-Satellite and In-Situ Measurements,” Natural Science, Vol. 3, No. 10, 2011, pp. 827-836.
[2] F. Are and E. Reimnitz, “An Overview of the Lena River Delta Setting: Geology, Tectonic, Geomorphology and Hydrology,” Journal of Coastal Research, Vol. 16, No. 4, 2000, pp. 1083-1093.
[3] S. Wetterich, S. Kuzmina, A. A. Andreev, F. Kienast, H. Meyer, L. Schirrmeister, T. Kuznetsova and M. Sierralta, “Palaeoenvironmental Dynamics Inferred from Late Quaternary Permafrost Deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia,” Quaternary Science Reviews, Vol. 27, No. 15-16, 2008, pp. 1523-1540.
[4] L. Kutzbach, D. Wagner and E. M. Pfeiffer, “Effect of Microrelief and Vegetation on Methane Emission from Wet Polygonal Tundra, Lena Delta, Northern Siberia,” Biogeochemistry, Vol. 69, No. 3, 2004, pp. 341-362.
[5] J. Schneider, G. Grosse and D. Wagner, “Land Cover Classification of Tundra Environments in the Arctic Lena Delta Based on Landsat 7 ETM+ Data and Its Application for Upscaling of Methane Emissions,” Remote Sensing of Environment, Vol. 113, No. 2, 2009, pp. 380-391.
[6] R. R. Muskett and V. E. Romanovsky, “Groundwater Storage Changes in Arctic Permafrost Watersheds from GRACE and in Situ Measurements,” Environmental Research Letters, Vol. 4, No. 4, 2009, 8 p.
[7] V. E. Romanovsky, S. S. Smith and H. H. Christiansen, “Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007-2009: A Synthesis,” Permafrost and Periglacial Process, Vol. 21, No. 2, 2010, pp. 106-116.
[8] R. R. Muskett and V. E. Romanovsky, “Alaskan Permafrost Groundwater Storage Changes Derived from GRACE and Ground Measurements,” Remote Sensing, Vol. 3, No. 2, 2011, pp. 378-397.
[9] A. N. Charkin, O. V. Dudarev, I. P. Semiletov, A. V. Kruhmalev, J. E. Vonk, L. Sánchez-García, E. Karlsson and ?. Gustafsson, “Seasonal and Interannual Variability of Sedimentation and Organic Matter Distribution in the Buor-Khaya Gulf: The Primary Recipient of Input from Lena River and Coastal Erosion in the Southeast Laptev Sea,” Biogeosciences, Vol. 8, No. 1, 2011, pp. 2581-2594.
[10] P. P. Overduin, S. Westermann, K. Yoshikawa, T. Haberlau, V. Romanovsky and S. Wetterich, “Geoelectric Observations of the Degradation of Nearshore Submarine Permafrost at Barrow (Alaskan Beaufort Sea),” Journal of Geophysical Research, Vol. 117, No. F2, 2012, Article ID: F02004.
[11] I. Bussmann, “Distribution of Methane in the Lena Delta and Buor-Khaya Bay, Russia,” Biogeosciences, Vol. 10, No. 7, 2013, pp. 4641-4652.
[12] H. Lantuit, P. P. Overduin and S. Wetterich, “Recent Progress Regarding Permafrost Coasts,” Permafrost Periglacial Processes, Vol. 24, No. 2, 2013, pp. 120-130.
[13] E. A. G. Schuur, B. W. Abbott, W. B. Bowden, V. Brovkin, P. Camill, J. G. Canadell, J. P. Chanton, F. S. Chapin III, T. R. Christensen, P. Ciais, B. T. Crosby, C. I. Czimczik, G. Grosse, J. Harden, D. J. Hayes, G. Hugelius, J. D. Jastrow, J. B. Jones, T. Kleinen, C. D. Koven, G. Krinner, P. Kuhry, D. M. Lawrence, A. D. McGuire, S. M. Natali, J. A. O’Donnell, C. L. Ping, W. J. Riley, A. Rinke, V. E. Romanovsky, A. B. K. Sannel, C. Schadel, K. Schaefer, J. Sky, Z. M. Subin, C. Tarnocai, M. R. Turetsky, M. P. Waldrop, K. M. Walter Anthony, K. P. Wickland, C. J. Wilson and S. A. Zimov, “Expert Assessment of Vulnerability of Permafrost Carbon to Climate Change,” Climatic Change, Vol. 119, No. 2, 2013, pp. 359-374.
[14] H. J. Zwally, B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne and R. Thomas, “ICESat’s Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land,” Journal of Geodynamics, Vol. 34, No. 3-4, 2002, pp. 405-445.
[15] R. Kwok and J. Morrison, “Dynamic Topography of the Ice-Covered Arctic Ocean from ICESat,” Geophysical Research Letters, Vol. 38, No. 2, 2011, Article ID: L02501.
[16] T. J. Urban, B. E. Schutz and A. L. Neuenschwander, “A Survey of ICESat Coastal Altimetry Application: Continental Coast, Open Ocean Island and Inland River,” Terrestrial Atmospheric and Oceanic Sciences, Vol. 19, No. 1-2, pp. 1-19, 2008.
[17] L. Padman and H. A. Fricker, “Tides on the Ross Ice Shelf Observed with ICESat,” Geophysical Research Letters, Vol. 32, No. 14, 2005, Article ID: L14503.
[18] B. E. Schutz, H. J. Zwally, C. A. Schuman, D. Hancock and P. J. DiMarzio, “Overview of the ICESat Mission,” Geophysical Research Letters, Vol. 32, No. 14, 2005, Article ID: L21S01.
[19] D. K. Atwood, R. M. Guritz, R. R. Muskett, C. S. Lingle, J. M. Sauber and J. T. Freymueller, “DEM Control in Arctic Alaska with ICESat Laser Altimetry,” IEEE Transactions Geoscience and Remote Sensing, Vol. 45, No. 11, 2007, pp. 3710-3720.
[20] R. R. Muskett, C. S. Lingle, J. M. Sauber, B. T. Rabus and W. V. Tangborn, “Acceleration of Surface Lowering on the Tidewater Glaciers of Icy Bay, Alaska, USA, from InSAR DEMs and ICESat Altimetry,” Earth and Planetary Science Letters, Vol. 265, No. 3-4, 2008, pp. 345- 359.
[21] R. R. Muskett, C. S. Lingle, J. M. Sauber, A. S. Post, W. V. Tangborn and B. T. Rabus, “Surging, Accelerating Surface Lowering and Volume Reduction of the Malaspina Glacier System, Alaska, USA, and Yukon, Canada, from 1972 to 2006,” Journal of Glaciology, Vol. 54, No. 188, 2008, pp. 788-800.
[22] R. R. Muskett, C. S. Lingle, J. M. Sauber, A. S. Post, W. V. Tangborn, B. T. Rabus, and K. A. Echelmeyer, “Airborne-Spaceborne DEM-and Laser Altimetry-Derived Surface Elevation and Volume Changes of the Bering Glacier System, 1972 through 2006,” Journal of Glaciology, Vol. 55, No. 190, 2009, pp. 316-326.
[23] S. J. Holgate, A. Matthews, P. L. Woodworth, L. J. Rickards, M. E. Tamisiea, E. Bradshaw, P. R. Foden, K. M. Gordon, S. Jevrejeva and J. Pugh, “New Data Systems and Products at the Permanent Service for Mean Sea Level,” Journal of Coastal Research, Vol. 29, No. 3, 2013, pp. 493-504.

comments powered by Disqus

Copyright © 2015 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.