JBM> Vol.1 No.3, December 2013

Fuzzy clustering of time series gene expression data with cubic-spline

DownloadDownload as PDF (Size:293KB) Full-Text HTML PP. 16-21   DOI: 10.4236/jbm.2013.13004

ABSTRACT

Data clustering techniques have been applied to ex- tract information from gene expression data for two decades. A large volume of novel clustering algorithms have been developed and achieved great success. However, due to the diverse structures and intensive noise, there is no reliable clustering approach can be applied to all gene expression data. In this paper, we aim to the feature of high noise and propose a cubic smoothing spline fitted for the time course ex- pression profile, by which noise can be filtered and then groups genes into clusters by applying fuzzy c-means clustering on the resulting splines (FCMS). The discrete values of radius of curvature are used to compute the similarity between spline curves. Results on gene expression data show that the FCMS has better performance than the original fuzzy c-means on reliability and noise robustness.

KEYWORDS


Cite this paper

Wang, Y. , Angelova, M. and Ali, A. (2013) Fuzzy clustering of time series gene expression data with cubic-spline. Journal of Biosciences and Medicines, 1, 16-21. doi: 10.4236/jbm.2013.13004.

References

[1] Belacel, N., Wang, Q. and Cuperlovic-Culf, M. (2006) Clustering methods for microarray gene expression data. Omics: A Journal of Integrative Biology, 10, 507-531.
[2] Tsai, T.H., Milhorn, D.M. and Huang, S.K. (2006) Microarray and gene-clustering analysis. Methods in Molecular Biology, 315, 165-174.
[3] Tang, R. and Muller, H.G. (2009) Time-synchronized clustering of gene expression trajectories. Biostatistics, 10, 32-45. http://dx.doi.org/10.1093/biostatistics/kxn011
[4] Song, J.J., Lee, H.J., Morris, J.S. and Kang, S. (2007) Clustering of time-course gene expression data using functional data analysis. Computational Biology and Chemistry, 31, 265-274. http://dx.doi.org/10.1016/j.compbiolchem.2007.05.006
[5] Bar-Joseph, Z. (2004) Analyzing time series gene expression data. Bioinformatics 20, 2493-2503. http://dx.doi.org/10.1093/bioinformatics/bth283
[6] Bar-Joseph, Z., Gerber, G.K., Gifford, D.K., Jaakkola, T.S. and Simon, I. (2003) Continuous representations of time-series gene expression data. Journal of Computational Biology, 10, 341-356. http://dx.doi.org/10.1089/10665270360688057
[7] Luan, Y.H. and Li, H.Z. (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19, 474-482. http://dx.doi.org/10.1093/bioinformatics/btg014
[8] Gasch, A.P. and Eisen, M.B. (2002) Exploring the conditional core-gulation of yeast gene expression through fuzzy k-means clustering. Genome Biology, 3, RESEARCH0059.
[9] Boratyn, G.M., Datta, S. and Datta, S. (2006) Biologically supervised hierarchical clustering algorithms for gene expression data. 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’06), New York, 30 August-3 September 2006, 5515-5518.
[10] Wang, J., Delabie, J., Aasheim, H., Smeland, E. and Myklebost, O. (2002) Clustering of the SOM easily re-veals distinct gene expression patterns: Results of a reanalysis of lymphoma study. BMC Bioinformatics, 3, 36. http://dx.doi.org/10.1093/bioinformatics/btg014
[11] Zhang, M., Adamu, B., Lin, C.C. and Yang, P. (2011) Gene expression analysis with integrated fuzzy C-means and pathway analysis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2011), Boston, 30 August-3 September 2011, 936-939.
[12] Dembele, D. and Kastner, P. (2003) Fuzzy C-means method for clustering microar-ray data. Bioinformatics, 19, 973-980. http://dx.doi.org/10.1093/bioinformatics/btg119
[13] Du, P., Gong, J., Syrkin Wurtele, E. and Dickerson, J.A. (2005) Modeling gene expression networks using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35, 1351-1359. http://dx.doi.org/10.1109/TSMCB.2005.855590
[14] Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. and Ruzzo, W.L. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977-987. http://dx.doi.org/10.1093/bioinformatics/17.10.977
[15] Yang, C.M., Wan, B.K. and Gao, X.F. (2003) Data pre-processing in cluster analysis of gene expression. Chinese Physics Letters, 20, 774-777. http://dx.doi.org/10.1093/bioinformatics/17.10.977
[16] Futschik, M.E. and Carlisle, B. (2005) Noise-robust soft clustering of gene expression time-course data. Journal of Bioinformatics and Computational Biology, 3, 965-988. http://dx.doi.org/10.1093/bioinformatics/17.10.977
[17] Hu, X., Yoo, I., Zhang, X., Nanavati, P. and Debjit, D. (2005) Wavelet transformation and cluster ensemble for gene expression analysis. International Journal of Bioinformatics Research and Applications, 1, 447-460. http://dx.doi.org/10.1504/IJBRA.2005.008447
[18] Dejean, S., Martin, P.G., Baccini, A. and Besse, P. (2007) Clustering time-series gene expression data using smoothing spline deriv-atives. EURASIP Journal on Bio-informatics & Systems Biology, 2007, Article ID: 70561.
[19] Yin, L., Huang, C.H. and Ni, J. (2006) Clustering of gene expression data: Performance and similarity analysis. BMC Bioinformatics, 7, S19. http://dx.doi.org/10.1186/1471-2105-7-S4-S19
[20] Kuragano, T. and Kasono, K. (2008) Curve generation and modification based on radius of curvature smoothing. Proceedings of the 10th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering (MAC-MESE’08), Bucharest, 7-9 November 2008, 80-87.
[21] Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. and Ruzzo, W.L. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977-987. http://dx.doi.org/10.1093/bioinformatics/17.10.977
[22] Fu, L. and Medico, E. (2007) FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics, 8, 3. http://dx.doi.org/10.1038/10343
[23] Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. and Church, G.M. (1999) Systematic determination of genetic network architecture. Nature genetics, 22, 281-285. http://dx.doi.org/10.1038/10343

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.