JBM> Vol.1 No.3, December 2013
Views: 2,944    Downloads: 443

PGJIFs, new mitochondrial PGJ2 target factors, regulate cell proliferation

DownloadDownload as PDF (Size:588KB) Full-Text HTML PP. 11-15   DOI: 10.4236/jbm.2013.13003

ABSTRACT

Our previous study showed that prostaglandin J2 (PGJ2) interacting factor (PGJIF) was purified and identified with magnetic nanobeads. Farther analysis of PGJ2 function shows that PGJ2 inhibits cell proliferation and rhodamine 123 incorporation. Using PGJ2- immobilized nanobeads, two target proteins were also purified and identified as PGJIF1 and PGJIF2. PGJIF1 genetic analysis showed that PGJIF1 regulates cell proliferation as well as rhodamine 123 incorporation in mitochondria, indicating that PGJIF1 is one of the PGJ2 target proteins. The other target protein, PGJIF2, changes its intracellular localization in PGJ2-dependent manner. Using nanobeads technology, two PGJ2 target factors were purified and identified.

KEYWORDS


Cite this paper

Umeda, M. , Uebi, T. , Maekawa, N. , Handa, H. and Imai, T. (2013) PGJIFs, new mitochondrial PGJ2 target factors, regulate cell proliferation. Journal of Biosciences and Medicines, 1, 11-15. doi: 10.4236/jbm.2013.13003.

References

[1] Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y. and Handa, H. (2010) Identification of a primary target of thalidomide teratogenicity. Science, 327, 1345-1350. http://dx.doi.org/10.1126/science.1177319
[2] Hiramoto, M., Maekawa, N., Kuge, T., Ayabe, F., Watanabe, A., Masaike, Y., Hatakeyama, M., Handa, H. and Imai, T. (2010) High-performance affinity chromatography method for identification of L-arginine interacting factors using magnetic nanobeads. Biomedical Chromatography, 24, 606-612.
[3] Maekawa, N., Hiramoto, M., Sakamoto, S., Azuma, M., Ito, T., Ikeda, M., Naitou, M., Acharya, H.P., Kobayashi, Y., Suematsu, M., Handa, H. and Imai, T. (2011) High-performance affinity purification for identification of 15- deoxy-12,14-PGJ2 interacting factors using magnetic nanobeads. Biomedical Chromatography, 25, 466-471. http://dx.doi.org/10.1002/bmc.1469
[4] Karasawa, S., Azuma, M., Kasama, T., Sakamoto, S., Kabe, Y., Imai, T., Yamaguchi, Y., Miyazawa, K. and Handa, H. (2013) Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Molecular Pharmaceutics, 83, 613-620. http://dx.doi.org/10.1124/mol.112.082602
[5] Hotta, K., Nashimoto, A., Yasumura, E., Suzuki, M., Azuma, M., Shima, D., Nabeshima, R., Hiramoto, M., Okada, A., Sakata-Sogawa, K., Tokunaga, M., Ito, T., Sakamoto, S., Kabe, Y., Aizawa, S., Imai, T., Yamaguchi, Y., Watanabe, H. and Handa, H. (2103) Vesnarinone suppresses TNFα mRNA expression by inhibiting valosin-containing proteins. Molecular Pharmaceutics, 83, 930- 938.
[6] Umeda, M., Uebi, T., Maekawa, N., Isaki, M., Miyama, Y., Masaike, Y., Handa, H. and Imai, T. (2013) Effective cofactor complex purification using nanobeads. Journal of Bioscience and Medicine, in Press.
[7] Uebi, T., Umeda, M., Maekawa, N., Karasawa, S., Handa, H. and Imai, T. (2013) Prohibitins, novel vitamin K2 target factors in osteoblast. Journal of Bioscience and Medicine, in Press.
[8] Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patal, I., Morris, D.C. and Lehmann, J.M. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell, 83, 813-819. http://dx.doi.org/10.1016/0092-8674(95)90194-9
[9] Bell-Parikh, L.C., Ide, T., Lawson, J.A., McNamara, P., Reilly, M. and FitzGerald, G.A. (2003) Biosynthesis of 15-deoxy-12,14-PGJ2 and the ligation of PPAR. Journal of Clinical Investigation, 112, 945-955.
[10] Heikkinen, S., Auwerx, J. and Argmann, C.A. (2007) PPARγ in human and mouse physiology. Biochimica et Biophysica Acta, 1771, 999-1013. http://dx.doi.org/10.1016/j.bbalip.2007.03.006
[11] Imai, T. (2013) Adipogensis and osteoblastgenesis in aging. Adipogensis: Signaling pathways, Molecular regulation and impact on human disease. In: Lin, Y.F. and Cai, X.X., Eds., Cell Biology Research Progress, Nova Science Publishers Inc., New York, 95-108.
[12] Aldini, G., Carini, M., Vistoli, G., Shibata, T., Kusano, Y., Gamberoni, L., Dalle-Dounne, I., Milzani, A. and Uchida, K. (2007) Identification of actin as a 15-deoxy-12,14-PGJ2 target in Neuroblastoma cells: Mass spectrometric, computational, and functional approaches to investigate the effect on cytoskeletal derangement. Biochemistry, 46, 2707-2718. http://dx.doi.org/10.1021/bi0618565
[13] Acharya, H.P. and Kobayashi, Y. (2005). Synthesis of phosphorylcholines possessing 5,6- or 14,15-epoxyiso-prostane A2 at sn-2 position. Tetrahedron Letters, 46, 8435-8438. http://dx.doi.org/10.1016/j.tetlet.2005.09.193
[14] Acharya, H.P. and Kobayashi, Y. (2005) Total synthesis of 2-(5,6-epoxyisoprotane A2) phosphorylcholine and elucidation of the relative configuration of the isoprostane moiety. Angewandte Chemie, 44, 3481-3484. http://dx.doi.org/10.1002/anie.200500534
[15] Acharya, H.P. and Kobayashi, Y. (2006) Highly efficient total synthesis of Δ12-PGJ2,15-deoxy-Δ12,14-PGJ2, and their analogues. Tetrahedron, 62, 3329-3343. http://dx.doi.org/10.1016/j.tet.2006.01.051
[16] Nishio, K., Masaike, Y., Ikeda, M., Narimatsu, H., Goken, N., Tsubouchi, S., Hatakeyama, M., Sakamoto, S., Hanyu, N., Sandhu, A., Kawaguchi, H., Abe, M. and Handa, H. (2008) Development of novel magnetic nano-carriers for high-performance affinity purification. Colloids and Surfaces B, Biointerfaces, 64, 162-169. http://dx.doi.org/10.1016/j.colsurfb.2008.01.013
[17] Imai, T., Sumi, Y., Hatakeyama, M., Fujimoto, K., Kawaguchi, H., Yajima, H. and Handa, H. (1996) Selective isolation of DNA or RNA using single-stranded DNA affinity latex particles. Journal of Colloid and Interface Science, 177, 245-249. http://dx.doi.org/10.1006/jcis.1996.0027
[18] Shimizu, N., Sugimoto, K., Tang, J., Nishi, T., Sato, I., Hiramoto, M., Aizawa, S., Hatakeyama, M., Ohba, R., Hatori, H., Yoshikawa, T., Suzuki, F., Oomori, A., Tanaka, H., Kawaguchi, H., Watanabe, H. and Handa, H. (2000) High-performance affinity beads for identifying drug receptors. Nature Biotechnology, 18, 877-881. http://dx.doi.org/10.1038/78496
[19] Ohtsu, Y., Ohba, R., Imamura, Y., Kobayashi, M., Hatori, H., Zenkoh, T., Hatakeyama, M., Manabe, T., Hino, M., Yamaguchi, Y., Kataoka, K., Kawaguchi, H., Watanabe, H. and Handa, H. (2005) Selective ligand purification using high-performance affinity beads. Analytical Biochemistry, 338, 245-252. http://dx.doi.org/10.1016/j.ab.2004.10.006
[20] Imai, T., Matsuda, K., Shimojima, T., Muramatsu, M., Handa, H. and Kato, S. (1997) ERC-55, a binding protein for the papilloma virus E6 oncoprotein, specifically inter-acts with vitamin D receptor among nuclear receptors. Biochemical and Biophysical Research Communications, 233, 765-769. http://dx.doi.org/10.1006/bbrc.1997.6531
[21] He, B., Feng, Q., Mukherjee, A., Lonard, D.M., DeMayo, F.J., Katzenellenbogen, B.S., Lydon, J.P. and O’Malley, B.W. (2008) A repressive role for prohibitin in estrogen signaling. Molecular Endocrinology, 22, 344-360. http://dx.doi.org/10.1210/me.2007-0400
[22] Kuramori, C., Azuma, M., Kume, K., Kaneko, Y., Inoue, A., Yamaguchi, Y., Kabe, Y., Hosoya, T., Kizaki, M., Suematsu, M. and Handa, H. (2009) Capsaicin binds to prohibitin 2 and displaces it from the mitochondria to the nucleus. Biochemical and Biophysical Research Communications, 379, 519-525. http://dx.doi.org/10.1016/j.bbrc.2008.12.103

comments powered by Disqus

Copyright © 2014 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.