Share This Article:

Feed-Forward Artificial Neural Network Model for Air Pollutant Index Prediction in the Southern Region of Peninsular Malaysia

Full-Text HTML Download Download as PDF (Size:1421KB) PP. 1-10
DOI: 10.4236/jep.2013.412A1001    3,254 Downloads   5,461 Views   Citations

ABSTRACT

This paper describes the application of principal component analysis (PCA) and artificial neural network (ANN) to predict the air pollutant index (API) within the seven selected Malaysian air monitoring stations in the southern region of Peninsular Malaysia based on seven years database (2005-2011). Feed-forward ANN was used as a prediction method. The feed-forward ANN analysis demonstrated that the rotated principal component scores (RPCs) were the best input parameters to predict API. From the 4 RPCs, only 10 (CO, O3, PM10, NO2, CH4, NmHC, THC, wind direction, humidity and ambient temp) out of 12 prediction variables were the most significant parameters to predict API. The results proved that the ANN method can be applied successfully as tools for decision making and problem solving for better atmospheric management.

Cite this paper

A. Azid, H. Juahir, M. Latif, S. Zain and M. Osman, "Feed-Forward Artificial Neural Network Model for Air Pollutant Index Prediction in the Southern Region of Peninsular Malaysia," Journal of Environmental Protection, Vol. 4 No. 12A, 2013, pp. 1-10. doi: 10.4236/jep.2013.412A1001.

References

[1] S. M. S. Nagendra and M. Khare, “Modelling Urban Air Quality Using Artificial Neural Network,” Clean Technologies and Environmental Policy, Vol. 7, No. 2, 2005, pp. 116-126.
http://dx.doi.org/10.1007/s10098-004-0267-6
[2] S. Z. Azmi, M. T. Latif, A. S. Ismail, L. Juneng and A. A. Jemain, “Trend and Status of Air Quality at Three Different Monitoring Stations in the Klang Valley, Malaysia,” Air Quality Atmosphere and Health, Vol. 3, No. 1, 2010, pp. 53-64. http://dx.doi.org/10.1007/s11869-009-0051-1
[3] R. Afroz, M. N. Hassan and N. A. Ibrahim, “Review of Air Pollution and Health Impacts in Malaysia,” Environmental Research, Vol. 92, No. 2, 2003, pp. 71-77.
http://dx.doi.org/10.1016/S0013-9351(02)00059-2
[4] S. N. S. A. Mutalib, H. Juahir, A. Azid, S. M. Sharif, M. T. Latif, A. Z. Aris, S. M. Zain and D. Dominick, “Spatial and Temporal Air Quality Pattern Recognition Using Environmetric Techniques: A Case Study in Malaysia,” Environmental Science: Processes & Impacts, Vol. 15, No. 9, 2013, pp. 1717-1728.
http://dx.doi.org/10.1039/c3em00161j
[5] M. B. Awang, A. B. Jaafar, A. M. Abdullah, M. B. Ismail, M. N. Hassan, R. Abdullah, S. Johan and H. Noor, “Air Quality in Malaysia: Impacts, Management Issue and Future Challenges,” Respirology, Vol. 5, No. 2, 2000, pp. 183-196.
http://dx.doi.org/10.1046/j.1440-1843.2000.00248.x
[6] B. T. Heninger and F. A. Shah, “Control of Stationary and Mobile Source Air Pollution: Reducing Emissions of Hydrocarbons for Ozone Abatement in Connecticut,” Land Economics, Vol. 74, No. 4, 1998, pp. 497-513.
http://dx.doi.org/10.2307/3146881
[7] H. H. Jamal, M. S. Pillay, H. Zailina, B. S. Shamsul, K. Sinha, Z. Zaman Huri, S. L. Khew, S. Mazrura, S. Ambu, A. Rahimah and M. S. Ruzita, “A Study of Health Impact & Risk Assessment of Urban Air Pollution in Klang Valley,” UKM Pakarunding Sdn Bhd, Kuala Lumpur, 2004, p. 100.
[8] H. Xie, F. Ma and Q. Bai, “Prediction of Indoor Air Quality Using Artificial Neural Networks,” IEEE Computer Society of 2009 Fifth International Conference on Natural Computation, 2009, pp. 414-418.
http://dx.doi.org/10.1109/ICNC.2009.502
[9] S. Deleawe, J. Kusznir, B. Lamb and D. Cook, “Predicting Air Quality in Smart Environments,” Journal of Ambient Intelligence and Smart Environments, Vol. 2, No. 2, 2010, pp. 145-154.
[10] M. Ezzati, A. D. Lopez, A. Rodgers, S. Vander Hoorn and C. J. Murray, “Comparative Risk Assessment Collaborating Group: Selected Major Risk Factors and Global and Regional Burden of Disease,” Lancet, Vol. 360, No. 9343, 2002, pp. 1347-1360.
http://dx.doi.org/10.1016/S0140-6736(02)11403-6
[11] W. R. W. Mahiyudin, M. Sahani, R. Aripin, M. T. Latif, T. Q. Thach and C. M. Wong, “Short-Term Effects of Daily Air Pollution on Mortality,” Atmospheric Environment, Vol. 65, 2013, pp. 69-79.
http://dx.doi.org/10.1016/j.atmosenv.2012.10.019
[12] D. Dominick, H. Juahir, M. T. Latif, S. M. Zain and A. Z. Aris, “Spatial Assessment of Air Quality Patterns in Malaysia Using Multivariate Analysis,” Atmospheric Environment, Vol. 60, pp. 172-181.
http://dx.doi.org/10.1016/j.atmosenv.2012.06.021
[13] M. M. Kamal, R. Jailani and R. L. A. Shauri, “Prediction of Ambient Air Quality Based on Neural Network Technique,” 4th Student Conference on Research and Development, Selangor, 27-28 June 2006, pp. 115-119.
http://dx.doi.org/10.1109/SCORED.2006.4339321
[14] S. V. Barai, A. K. Dikshit and S. Sharma, “Neural Network Models for Air Quality Prediction: A Comparative Study,” In: A. Saad, et al. Eds., Soft Computing in Industrial Application, Advance in Soft Computing, Springer-Verlag, Berlin, Vol. 39, 2007, pp. 290-305.
http://dx.doi.org/10.1007/978-3-540-70706-6_27
[15] W. Wang, Z. Xu and J. W. Lu, “Three Improved Neural Network Models for Air Quality Forecasting,” Engineering Computations, Vol. 20, No. 2, 2003, pp. 192-210.
http://dx.doi.org/10.1108/02644400310465317
[16] M. Hubbard and W. G. Cobourn, “Development of a Regression Model to Forecast Ground-Level Ozone Concentration in Louisville, KY,” Atmospheric Environment, Vol. 32, No. 14-15, 1998, pp. 2637-2647.
http://dx.doi.org/10.1016/S1352-2310(97)00444-5
[17] J. M. Davis and P. Speckman, “A Model for Predicting Maximum and 8 h Average Ozone in Houston,” Atmospheric Environment, Vol. 33, No. 16, 1999, pp. 2487-2500. http://dx.doi.org/10.1016/S1352-2310(98)00320-3
[18] P. Perez and J. Reyes, “An Integrated Neural Network Model for PM10 Forecasting,” Atmospheric Environment, Vol. 40, 2006, pp. 2845-2851.
http://dx.doi.org/10.1016/j.atmosenv.2006.01.010
[19] U. Brunelli, U. Piazza and L. Pignato, “Two-Day Ahead Prediction of Daily Maximum Concentrations of SO2, O3, PM10, NO2, CO in the Urban Area of Palermo, Italy,” Atmospheric Environment, Vol. 41, No. 14, 2007, pp. 2967-2995. http://dx.doi.org/10.1016/j.atmosenv.2006.12.013
[20] S. Thomas and R. B. Jacko, “Model for Forecasting Expressway Fine Particulate Matter and Carbon Monoxide Concentration: Application of Regression and Neural Network Model,” Air & Waste Management Association, Vol. 57, No. 4, 2007, pp. 480-488.
http://dx.doi.org/10.3155/1047-3289.57.4.480
[21] K. D. Karatzas and S. Kaltsatos, “Air Pollution Modelling with the Aid of Computational Intelligence Methods in Thessaloniki, Greece,” Simulation Modelling Practice and Theory, Vol. 15, 2007, pp. 1310-1319.
http://dx.doi.org/10.1016/j.simpat.2007.09.005
[22] S. Palani, P. Tkalich, R. Balasubramanian and J. Palanichamy, “ANN Application for Prediction of Atmospheric Nitrogen Deposition to Aquatic Ecosystems,” Marine Pollution Bulletin, Vol. 62, 2011, pp. 1198-1206.
http://dx.doi.org/10.1016/j.marpolbul.2011.03.033
[23] S. H. Sohn, S. C. Oh and Y. K. Yeo, “Prediction of Air Pollutants by Using an Artificial Neural Network,” Korean Journal of Chemical Engineering, Vol. 16, No. 3, 1999, pp. 382-387.
http://dx.doi.org/10.1007/BF02707129
[24] A. Kurt, B. Gulbagai, F. Karaca and O. Alagha, “An Online Air Pollution Forecasting System Using Neural Networks,” Environment International, Vol. 34, No. 5, 2008, pp. 592-598.
http://dx.doi.org/10.1016/j.envint.2007.12.020
[25] A. Mahboubeh, A. Afsaneh and Z. Gholamreza, “The Potential of Artificial Neural Network Technique in Daily and Monthly Ambient Air Temperature Prediction,” International Journal of Environmental Science and Development, Vol. 3, No. 1, 2012, pp. 33-38.
[26] H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen and M. Kolehmainen, “Methods for Imputation of Missing Values in Air Quality Data Set,” Atmospheric Environment, Vol. 38, 2004, pp. 2895-2907.
http://dx.doi.org/10.1016/j.atmosenv.2004.02.026
[27] J.-O. Kim and C. W. Mueller, “Introduction to Factor Analysis: What It Is and How to Do It,” Quantitative Applications in the Social Science Series, Sage University Press, Newbury Park, 1987, p. 80.
[28] M. Vega, R. Pardo, E. Barrato and L. Deban, “Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis,” Water Research, Vol. 32, 1998, pp. 3581-3592.
http://dx.doi.org/10.1016/S0043-1354(98)00138-9
[29] J. Stevens, “Applied Multivariate Statistics for the Social Science,” Hill Sdale, New Jersey, 1986, p. 515.
[30] D. Silverman and J. A. Dracup, “Artificial Neural Networks and Long-Range Precipitation in California,” Journal of Applied Meteorology, Vol. 31, No. 1, 2000, pp. 57-66.
http://dx.doi.org/10.1175/1520-0450(2000)039<0057:ANNALR>2.0.CO;2
[31] H. Hakimpoor, K. A. Arshad, H. H. Tat, N. Khani and M. Rahmandoust, “Artificial Neural Networks’ Application in Management,” World Applied Sciences Journal, Vol. 14, No. 7, 2011, pp. 1008-1019.
[32] A. Chaloulakou, G. Grivas and N. Spyrellis, “Neural Network and Multiple Regression Model for PM10 Prediction in Athens: A Comparative Assessment,” Journal of the Air & Waste Management Association, Vol. 53, No. 10, 2003, pp. 1183-1190.
http://dx.doi.org/10.1080/10473289.2003.10466276
[33] S. O. Haykin, “Neural Networks and Learning Machines,” Prentice Hall, Upper Saddle River, Vol. 10, 2009, p. 936.
[34] I. N. Daliakopoulos, P. Coulibaly and I. K. Tsanis, “Groundwater Level Forecasting Using Artificial Neural Networks,” Journal of Hydrology, Vol. 309, 2005, pp. 229-240. http://dx.doi.org/10.1016/j.jhydrol.2004.12.001
[35] M. F. M. Nasir, H. Juahir, N. Roslan, I. Mohd, N. A. Shafie and N. Ramli, “Artificial Neural Networks Combined with Sensitivity Analysis as a Prediction Model for Water Quality Index in Juru River, Malaysia,” International Journal of Environmental Protection, Vol. 1, No. 3, 2011, pp. 1-8. http://dx.doi.org/10.5963/IJEP0103001

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.