Synthesis, Characterization, Anti-Bacterial and Anti-Fungal Activities of New Quinoxaline 1,4-di-N-Oxide Derivatives

Abstract

A new series of quinoxaline 1,4-di-N-oxides were synthesized and evaluated for their antibacterial and antifungal activities. The best result was demonstrated by 3-amino-N-(4-methoxyphenyl)-2-quinoxalinecarboxamide 1,4-di-N-oxide 4e, MIC (0.24 μg/ml) against Aspergillus fumigatus, and (0.12 μg/ml) against Streptococcus pneumonia.

Share and Cite:

D. Soliman, "Synthesis, Characterization, Anti-Bacterial and Anti-Fungal Activities of New Quinoxaline 1,4-di-N-Oxide Derivatives," International Journal of Organic Chemistry, Vol. 3 No. 3A, 2013, pp. 65-72. doi: 10.4236/ijoc.2013.33A007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Deepika, P. Surendra, N. K. Sachin and S. Shewta, “Biological Activity of Quinoxaline Derivatives,” International Journal of Current Pharmaceutical Review and Research, Vol. 1, No. 3, 2011, pp. 33-46.
[2] B. Ganley, G. Chowdhury, J. Bhansali, J. S. Daniels and K. S. Gates, “Redox-Activated, Hypoxia-Selective DNA Cleavage by Quinoxaline 1,4-di-N-oxide,” Bioorganic and Medicinal Chemistry, Vol. 9, No. 9, 2001, pp. 2395-2401. http://dx.doi.org/10.1016/S0968-0896(01)00163-8
[3] R. G. Glushkov, T. I. Vozyakova, E. V. Adamskaya, S. A. Aleinikova, T. P. Radkevich, L. D. Shepilova, E. N. Padeiskaya and T. A. Gus’kova, “Synthesis and Antibacterial Activity of New Derivatives of 1,4-di-N-Oxides of Quinoxaline,” Pharmaceutical Chemistry Journal, Vol. 28, No. 1, 1994, pp. 17-20.
http://www.springer.com/10.1007/BF02218945
[4] E. Vicente, R.Villar, A. Burguete, B. Solano, S. PérezSilanes, I. Aldana, J. A. Maddry, A. J. Lenaerts, S. G. Franzblau, S. Cho, A. Monge and R. C. Goldman, “Efficacy of Quinoxaline-2-Carboxylate 1,4-Di-N-Oxide Derivatives in Experimental Tuberculosis,” Antimicrobial Agents and Chemotherapy, Vol. 52, No. 9, 2008, pp. 3321-3326. http://dx.doi.org/10.1128/AAC.00379-08
[5] M. Loriga, A. Nuvole, G. Paglietti, G. Fadda and S. Zanetti, “2-Phenyl-6(7)-R Substituted Quinoxalines N-Oxides. Synthesis, Structure Elucidation and Antimicrobial Activity,” European Journal of Medicinal Chemistry, Vol. 25, No. 6, 1990, pp. 527-532.
http://dx.doi.org/10.1016/0223-5234(90)90147-U
[6] D. Benitez, M. Cabrera, P. Hernández, L. Boiani, M. L. Lavaggi, R. Di Maio, G. Yaluff, E. Serna, S. Torres, M. E. Ferreira, N. Vera de Bilbao, E. Torres, S. Pérez-Silanes, B. Solano, E. Moreno, I. Aldana, A. López de Ceráin, H. Cerecetto, M. González and A. Monge, “Trifluoromethylquinoxaline N,N'-dioxides as Anti-Trypanosomatid Agents. Identification of Optimal Anti-T. Cruzi Agents and Mechanism of Action Studies,” Journal of Medicinal Chemistry, Vol. 54, No. 10, 2011, pp. 3624-3636.
http://dx.doi.org/10.1021/jm2002469
[7] G. Aguirre, H. Cerecetto, R. Di Maio, M. González, M. E. Alfaro, A. Jaso, B. Zarranz, M. A. Ortega, I. Aldana and A. Monge-Vega, “Quinoxaline N,N'-Dioxide Derivatives and Related Compounds as Growth Inhibitors of Trypanosoma Cruzi. Structure-Activity Relationships” Bioorganic and Medicinal Chemistry Letters, Vol. 14, No. 14, 2004, pp. 3835-3839.
http://dx.doi.org/10.1016/j.bmcl.2004.04.088
[8] A. Carta, M. Loriga, G. Paglietti, A. Mattana, P. L. Fiori, P. Mollicotti, L. Sechi and S. Zanetti, “Synthesis AntiMycobacterial, Anti-Trichomonas and Anti-Candida in Vitro Activities of 2-Substituted-6,7-Diflouro-3-Methylquinoxaline 1,4-dioxides,” European Journal of Medicinal Chemistry, Vol. 39, No. 2, 2004, pp. 195-203.
http://dx.doi.org/10.1016/j.ejmech.2003.11.008
[9] S. Ancizu, E. Moreno, E. Torres, A. Burguete, S. PérezSilanes, D. Benítez, R. Villar, B. Solano, A. Marín, I. Aldana, H. Cerecetto, M. González and A. Monge, “Heterocyclic-2-Carboxylic Acid (3-Cyano-1,4-di-Noxidequinoxalin-2-yl) Amide Derivatives as Hits for the Development of Neglected Disease Drugs,” Molecules, Vol. 14, No. 6, 2009, pp. 2256-2272.
[10] A. Jaso, B. Zarranz, I. Aldana and A. Monge, “Synthesis of New Quinoxaline-2-Carboxylate 1,4-Dioxide Derivatives as Anti-Mycobacterium Tuberculosis Agents,” Journal of Medicinal Chemistry, Vol. 48, No. 6, 2005, pp. 2019-2025. http://dx.doi.org/10.1021/jm049952w
[11] E. Moreno, S. Ancizu, S. Pérez-Silanes, E. Torres, I. Aldana and A. Monge, “Synthesis and Antimycobacterial Activity of New Quinoxaline-2-Carboxamide 1,4-di-NOxide Derivatives,” European Journal of Medicinal Chemistry, Vol. 45, No. 10, 2010, pp. 4418-4426.
http://dx.doi.org/10.1016/j.ejmech.2010.06.036
[12] E. Vicente, S. Pérez-Silanes, L. M. Lima, S. Ancizu, A. Burguete, B. Solano, R. Villar, I. Aldana and A. Monge, “Selective Activity against Mycobacterium tuberculosis of New Quinoxaline 1,4-di-N-Oxides,” Bioorganic and Medicinal Chemistry, Vol. 17, No. 2, 2009, pp. 385-389.
http://dx.doi.org/10.1016/j.bmc.2008.10.086
[13] B. Zarranz, A. Jaso, I. Aldana and A. Monge, “Synthesis and Antimycobacterial Activity of New Quinoxaline-2-Carboxamide 1,4-di-N-Oxide Derivatives,” Bioorganic and Medicinal Chemistry, Vol. 11, No. 10, 2003, pp. 2149-2156.
http://dx.doi.org/10.1016/S0968-0896(03)00119-6
[14] A. Monge, J. A. Palop, M. Gonzaliz, F. J. Martinez Crespo, A. Lopez de Cerain, Y. Sainz and S. Narro, “New Hypoxia-Selective Cytotoxines Derived from Quinoxaline 1,4-Dioxides,” Journal of Heterocyclic Chemistry, Vol. 32, No. 4, 1995, pp. 1213-1217.
http://dx.doi.org/10.1002/jhet.5570320420
[15] M. J. Haddadin, G. A. gopian, C. H. Issidorides, “Synthesis and Photolysis of Some Substituted Quinoxaline di-NOxides,” Journal of Organic Chemistry, Vol. 36, No. 4, 1971, pp. 514-517.
http://dx.doi.org/10.1021/jo00803a005
[16] M. A. Ortega, Y. Sainz, M. E. Montoya, A. Jaso, B. Zarranz, I. Aldana and A. Monge, “Anti-Mycobacterium tuberculosis Agents Derived from Quinoxaline-2-Carbonitrile and Quinoxaline-2-Carbonitrile 1,4-di-N-oxide,” Arzneimittelforschung, Vol. 52, 2002, pp. 113-119.
[17] K. M. Amin, M. M. F. Ismail, E. Noaman, D. H. Soliman and Y. A. Ammar, “New Quinoxaline 1,4-di-N-Oxides. Part 1: Hypoxia-Selective Cytotoxins and Anticancer Agents Derived from Quinoxaline 1,4-di-N-Oxides,” Bioorganic and Medicinal Chemistry, Vol. 14, 2006, pp. 6917-6923.
http://dx.doi.org/10.1016/j.bmc.2006.06.038
[18] G. W. H. Cheeseman, “Condensed Pyrazines,” Wiley and Sons, New York, 1979, p. 35.
[19] B. Zarranz, A. Jaso, I. Aldana and A. Monge, “Synthesis and Anticancer Activity Evaluation of New 2-Alkylcarbonyl and 2-Benzoyl-3-Trifluoromethyl-Quinoxaline 1,4-di-N-oxide Derivatives,” Bioorganic and Medicinal Chemistry, Vol. 12, No. 37, 2004, pp. 3711-3721.
http://dx.doi.org/10.1016/j.bmc.2004.04.013
[20] I. A. Holder and S. T. Boyce, “Agar Well Diffusion Assay Testing of Bacterial Susceptibility to Various Antimicrobials in Concentrations Non-Toxic for Human Cells in Culture,” Burns, Vol. 20, 1994, pp. 426-429.
http://dx.doi.org/10.1016/0305-4179(94)90035-3
[21] H. Agwa, M. M. Aly and R. Bonaly, “Isolation and Characterization of Two Streptomyces Species Produced Non Polyenic Antifungal Agents,” Journal of Union Arab Bioogyl, Vol. 7, 2000, pp. 62-82.
[22] J. H. Doughari, “Antimicrobial Activity of Tamarindus indica Linn. Trop,” Journal of Pharmaceutical Research, Vol. 5, No. 2, 2006, pp. 597-603.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.