Alloy Gene Gibbs Energy Partition Function and Equilibrium Holographic Network Phase Diagrams of AuCu-Type Sublattice System

Abstract

Taking AuCu-sublattice system as an example, we present two discoveries and a method. First, the alloy gene sequences are the central characteristic atom sequences in the basic coordination cluster sequences. Second, the transmission mode of the information about structures and properties of the alloy genes is described by the alloy gene Gibbs energy partition function. The most valuable method in the system sciences is “the whole obtained from a few parts”. We have established the alloy gene database and holographic alloy positioning system of the Au-Cu system, as well as alloy gene Gibbs energy partition function and equilibrium holographic network phase diagrams of the AuCu-type sublattice system. It means that a standard way for researchers to share predictive algorithms and computational methods may be produced during designing advanced alloys.

Share and Cite:

Y. Xie, X. Li, X. Liu, Y. Nie and H. Peng, "Alloy Gene Gibbs Energy Partition Function and Equilibrium Holographic Network Phase Diagrams of AuCu-Type Sublattice System," International Journal of Communications, Network and System Sciences, Vol. 6 No. 10, 2013, pp. 415-442. doi: 10.4236/ijcns.2013.610045.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Q. Xie, “Systematic Science of Alloys,” Central South University Press, Changsha, China, 2012.
[2] H. A. Bethe, “Statistical Theory of Superlattices,” Proceedings of the Royal Society of London, Vol. 150, No. 871, 1935, pp. 552-575.
http://dx.doi.org/10.1098/rspa.1935.0122
[3] R. Kikuchi, D. De Fontaine, M. Murakami and T. Nakamura, “Ternary Phase Diagram Calculations—II Examples of Clustering and Ordering Systems,” Acta Metallurgica, Vol. 25, 1997, pp. 207-219.
http://dx.doi.org/10.1016/0001-6160(77)90124-9
[4] M. Asta and D. De Fontaine, “First-Principles Study of Phase Stability of Ti-Al Intermetallic Compounds,” Journal of Materials Research, Vol. 8, No. 10, 1993, pp. 2554-2568. http://dx.doi.org/10.1557/JMR.1993.2554
[5] V. Ozolins, C. Wolverton and A. Zunger, “Cu-Au, Ag-Au, Cu-Ag, and Ni-Au Intermetallics: First-Principles Study of Temperature-Composition Phase Diagrams and Structures,” Physical Review B, Vol. 57, No. 11, 1998, pp. 6427-6443. http://dx.doi.org/10.1103/PhysRevB.57.6427
[6] B. Sundman, S. G. Fries and W. A. Oates, “A Thermo-dynamic Assessment of the Au-Cu System,” Calphad, Vol. 22, No. 2, 1998, pp. 335-354.
http://dx.doi.org/10.1016/S0364-5916(98)00034-0
[7] Hillert, M., “The compound energy formalism,” Journal of Alloys and Compounds, Vol. 320, No. 2, 2001, pp. 161-176.
http://dx.doi.org/10.1016/S0925-8388(00)01481-X
[8] Y. Q. Xie, X. B. Liu, X. B. Li, H. J. Peng and Y. Z. Nie, “Potential Energies of Characteristic Atoms on Basis of Experimental Heats of Formation of AuCu and AuCu3 Compounds,” Transactions of Nonferrous Metals Society of China, Vol. 19, No. 5, 2009, pp.1243-1256.
http://dx.doi.org/10.1016/S1003-6326(08)60436-7
[9] Y. Q. Xie, X. B. Liu, X. B. Li, H. J. Peng and Y. Z. Nie, “Volume Sequences of Characteristic Atoms Separated from Experimental Volumes of AuCu and AuCu3 Compounds,” Transactions of Nonferrous Metals Society of China, Vol. 19, No. 6, 2009, pp. 1559-1617.
http://dx.doi.org/10.1016/S1003-6326(09)60077-7
[10] W. L. Bragg and E. J. Williams, “The Effect of Thermal Agitation on Atomic Arrangement in Alloys,” Proceedings the Royal of Society A, Vol. 145, No. 855, 1934, pp. 699-730. http://dx.doi.org/10.1098/rspa.1934.0132
[11] W. L. Bragg and E. J. Williams, “The Effect of Thermal Agitation on Atomic Arrangement in Alloys II,” Proceedings the Royal of Society A, Vol. 151, No. 874, 1935, pp. 540-566. http://dx.doi.org/10.1098/rspa.1935.0165
[12] R. A. Oriani, “Thermodynamics of Order Alloy. II. The Gold-Copper System,” Acta Metallurgica, Vol. 2, No. 4, 1954, pp. 608-615.
http://dx.doi.org/10.1016/0001-6160(54)90196-0
[13] F. N. Rhines, W. E. Bond and R. A. Rummel, “Constitution of Order Alloys of the System Copper-Gold,” Transactions of the American Society of Metals, Vol. 47, 1955, pp. 578-597.
[14] W. A. Oates, F. Zhang, S.-L .Chen and Y.A. Chang, “Improved Cluster-Site Approximation for the Entropy of Mixing in Multicomponent Solid Solutions,” Physical Review B, Vol. 59, No. 17, 1999, pp. 11221-11225.
http://dx.doi.org/10.1103/PhysRevB.59.11221
[15] Y. Q. Xie, X. B. Liu, H. J. Peng, Y. Z. Nie, X. B. Li and Y. F. Li, “Characteristic Atom Arranging Crystallography of Alloy Phases for Au-Cu System,” Science China: Technological Sciences, Vol. 54, No. 6, 2011, pp. 1560-1567. http://dx.doi.org/10.1007/s11431-011-4390-4
[16] Y. Q. Xie, “Atomic Energies and Gibbs Energy Functions of Ag-Cu Alloys,” Science in China (Series E), Vol. 41, No. 2, 1998, pp. 146-156.
http://dx.doi.org/10.1007/BF02919677
[17] Y. Q. Xie and X. D. Zhang, “Atomic Volume and Volume Functions of Ag-Cu Alloys,” Science in China (Series E), Vol. 41, No. 2, 1998, pp. 157-168.
http://dx.doi.org/10.1007/BF02919678
[18] Y. Q. Xie, “A New Potential Function with Many-Atom Interactions in Solid,” Science in China (Series A), Vol. 36, No.1, 1993, pp. 90-99.
[19] Y. Q. Xie, “Electronic Structure and Properties of Pure Iron,” Acta Metallurgica et Materialia, Vol. 42, No. 11, 1994, pp. 3705-3715.
http://dx.doi.org/10.1016/0956-7151(94)90436-7
[20] Y. Q. Xie, “Relationship between Partial and Average Atomic Volumes of Components in Au-Ni Alloys”, Transactions of Nonferrous Metals Society of China, Vol. 21, No. 8, 2011, pp. 1801-1807.
http://dx.doi.org/10.1016/S1003-6326(11)60934-5

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.