Share This Article:

Anisotropic Magnetocaloric Effect and Magnetic Order in Antiferromagnetic Gd2InGe2

Full-Text HTML XML Download Download as PDF (Size:634KB) PP. 180-183
DOI: 10.4236/wjcmp.2013.34029    3,212 Downloads   5,184 Views   Citations

ABSTRACT

We investigated the transport, thermal and magnetic properties of antiferromagnetic (TN = 45 K) Gd2InGe2. Magnetization measurements under applied magnetic field, oriented along different crystallographic directions, were used to extract the anisotropic magnetocaloric effect. We also measured magnetization under pulsed field up to 45 T. From the analysis of the electrical transport and magnetization, conduction band electrons were weakly coupled to Gd f-electron local moments. Differential scanning calorimeter data confirmed a second order phase of the antiferromagnetic to paramagnetic transition. The anisotropic magnetocaloric effect points to a model of magnetic ordering whereby Gd local moments couple ferromagnetically and antiferromagnetically perpendicular and parallel, respectively, to the c-axis.

Cite this paper

Lima Sharma, A. , Gomes, A. and Sharma, P. (2013) Anisotropic Magnetocaloric Effect and Magnetic Order in Antiferromagnetic Gd2InGe2. World Journal of Condensed Matter Physics, 3, 180-183. doi: 10.4236/wjcmp.2013.34029.

References

[1] V. K. Pecharsky and K. A. Gschneidner Jr., “Tunable Magnetic Regenerator Alloys with a Giant Magnetocaloric Effect for Magnetic Refrigeration from ~20 to ~290 K,” Applied Physics Letters, Vol. 70, No. 24, 1997, pp. 3299. http://dx.doi.org/10.1063/1.119206
[2] V. K. Pecharsky, A. P. Holm, K. A. Gschneidner Jr. and R. Rink, “Massive Magnetic-Field-Induced Structural Transformation in Gd5Ge4 and the Nature of the Giant Magnetocaloric Effect,” Physical Review Letters, Vol. 91 No. 19, 2003, Article ID: 197204.
http://dx.doi.org/10.1103/PhysRevLett.91.197204
[3] E. M. Levin, V. K. Pecharsky, K. A. Gschneidner Jr. and G. J. Miller, “Spontaneous Generation of Voltage in Gd5(SixGe4-x) during a First-Order Phase Transition Induced by Temperature or Magnetic Field,” Physical Review B, Vol. 64, 2001, Article ID: 144406.
[4] E. M. Levin, K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetic-Field and Temperature Dependencies of the Electrical Resistance near the Magnetic and Crystallographic First-Order Phase Transition of Gd5(Si2Ge2),” Physical Review B, Vol. 60, No. 11, 1999, pp. 7993-7997.
http://dx.doi.org/10.1103/PhysRevB.60.7993
[5] Z. W. Ouyang, V. K. Pecharsky, K. A. Gschneidner Jr., D. L. Schlagel and T. A. Lagrasso, “Magnetic Anisotropy and Magnetic Phase Diagram of Gd5Ge4,” Physical Review B, Vol. 74, No. 2, 2006, Article ID: 024401.
http://dx.doi.org/10.1103/PhysRevB.74.024401
[6] P. H. Tobash, D. Lins, S. Bobev, A. L. Lima, M. F. Hundley, J. D. Thompson and J. L. Sarrao, “Crystal Growth, Structural and Magnetic Property Studies on a Family of Ternary Rare Earth Phases RE2InGe2 (RE = Sm, Gd, Dy, Ho, Yb),” Chemistry of Materials, Vol. 17, No. 22, 2005, pp. 5567-5573.
http://dx.doi.org/10.1021/cm051618g
[7] P. A. Goddard, J. Singleton, A. L. Lima Sharma, E. Morosan, S. J. Blundell, S. L. Bud’ko and P. C. Canfield, “Separation of Energy Scales in the Kagome Antiferromagnet TmAgGe: A Magnetic-Field Orientation Study up to 55 T,” Physical Review B, Vol. 75, No. 9, 2007, Article ID: 094426.
http://dx.doi.org/10.1103/PhysRevB.75.094426
[8] A. L. Lima Sharma and A. M. Gomes, “Experimental Investigations of the Entanglement in the Magnetization of Layered CaMn2Sb2 Compound,” Europhysics Letters, Vol. 84, No. 6, 2008, Article ID: 60003.
http://dx.doi.org/10.1209/0295-5075/84/60003
[9] A. L. Lima Sharma, S. Bobev and J. L. Sarrao, “Oscillatory Behavior of Magnetocaloric Effect of RE2Al3Si2 and CeAlSi,” Journal of Magnetism and Magnetic Materials, Vol. 312, No. 2, 2007, pp. 400-404.
http://dx.doi.org/10.1016/j.jmmm.2006.11.125
[10] J. M. Ziman, “Principles of the Theory of the Solids,” Cambridge University Press, London, 1964.
[11] E. Z. Valiev, “Entropy and Magnetocaloric Effect in Ferromagnets and Antiferromagnets,” Physics of Metals and Metallography, Vol. 104, No. 1, 2007, pp. 8-12.
http://dx.doi.org/10.1134/S0031918X07070022
[12] C. G. Garrett, “The Critical Field Curve in an Antiferromagnetic Crystal,” Journal of Chemical Physics, Vol. 19, No. 9, 1951, p. 1154. http://dx.doi.org/10.1063/1.1748495

  
comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.