Bioassay of Winter Wheat for Gibberellic Acid Sensitivity

Abstract

Increasing winter wheat seedling growth would make it a better winter cover crop. Gibberellic acid (GA3) seed treatment may accomplish this by stimulating stem growth. A bioassay, mimicking field conditions, could determine the relative sensitivity of conventional and semi-dwarf cultivars. In growth chambers set for cool (10℃/4℃) and warm (21℃/4℃) conditions, wheat seeds were treated with 0 and 125 to 16,000 ppm GA3. The cultivars Goodstreak (tall or conventional) and Wesley (semi-dwarf) were compared as standards. Emergence and plant height were measured. Goodstreak showed a significant growth promotion at 500 ppm GA3 when seeds were dipped and 2000 ppm when GA3 was applied in-furrow under both temperature regimes. Wesley in general required the same or a higher dose of GA3. Separately, the seeds of nine other cultivars were treated with GA3 as the standards. Based on maximum height promotion, the most sensitive cultivars under cool conditions were Goodstreak, Harry, Millenium, and Wahoo; under warm conditions, the most sensitive cultivars were Alliance, Goodstreak, Jagalene, and Millenium. In general, the least GA3 sensitive cultivars were Arrowsmith, Scout66, and Wesley. Buckskin and InfinityCL were intermediate. The rye cultivar Rymin also was tested and showed less sensitivity to GA3 than Goodstreak. When 6 benzyladenine (6BA) with GA3 was applied to Goodstreak and Wesley seed, emergence, plant height and weight, and tiller formation were reduced. Wheat cultivars will respond to GA3 and differ in the amount of GA3 needed. The results of this growth chamber study will guide subsequent field trials.

Share and Cite:

A. Pavlista, D. Santra and D. Baltensperger, "Bioassay of Winter Wheat for Gibberellic Acid Sensitivity," American Journal of Plant Sciences, Vol. 4 No. 10, 2013, pp. 2015-2022. doi: 10.4236/ajps.2013.410252.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] USDA, “Usual Planting and Harvesting Dates for US Field Crops,” Agricultural Handbook # 628, National Agricultural Statistics Services, Washington DC, 1997.
[2] W. A. Kasim, M. E. Osman, M. N. Omar, I. A. Abd ElDain, S. Bejai and J. Meijer, “Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria,” Journal of Plant Growth Regulations, Vol. 32, 2013, pp. 122-130. http://dx.doi.org/10.1007/s00344-012-9283-7
[3] N. Takahashi, B. O. Phinney and J. MacMillan, “Gibberellins,” Springer-Verlag, NYC, New York, 1991.
http://dx.doi.org/10.1007/978-1-4612-3002-1
[4] P. J. Davies, “Plant Hormones: Biosynthesis, Signal Transduction, Action,” 3rd Edition, Springer-Verlag, NYC, New York, 2010.
[5] P. C. Marth, W. V. Audia and J. W. Mitchell, “Effects of Gibberellic Acid on Growth and Development of Plants of Various Genera and Species,” Botanical Gazette, Vol. 118, 1956, pp. 106-111.
http://dx.doi.org/10.1086/335932
[6] M. Knoche, N. K. Lownds and M. J. Bukovac, “Spray Application Factors and Plant Growth Regulator Performance: IV. Dose Response Relationships,” American Society for Horticultural Science, Vol. 125, 2000, pp. 195-199.
[7] A. D. Pavlista, D. K. Santra, J. A. Schild and G. W. Hergert, “Gibberellic Acid Sensitivity among Common Bean Cultivars (Phaseolus vulgaris L.),” HortScience, Vol. 47, 2012, pp. 637-642.
[8] V. B. Busov, A. M. Brunner and S. H. Strauss, “Genes for Control of Plant Stature and Form,” New Phytologist, Vol. 177, 2008, pp. 589-607.
http://dx.doi.org/10.1111/j.1469-8137.2007.02324.x
[9] J. Peng, D. E. Richards, N. M. Hartley, G. P. Murphy, K. M. Devos, J. E. Flintham, J. Beales, L. J. Fish, A. J. Worland, F. Pelica, D. Sudhakar, P. Christou, J. W. Snape, M. D. Gale and N. P. Harberd, “‘Green Revolution’ Genes Encode Mutant Gibberellin Response Modulator,” Nature, Vol. 400, 1999, pp. 256-261.
http://dx.doi.org/10.1038/22307
[10] M. D. Gale and S. Youssefian, “Dwarfing Genes in Wheat,” In: G. E. Russell, Ed., Progress in Plant Breeding, Butterworth, London, 1985, pp. 1-35.
[11] A. Borner, J. Plaschke, V. Korzun and A. J. Worland, “The Relationships between the Dwarfing Genes of Wheat and Rye,” Euphytica, Vol. 89, 1996, pp. 69-75.
http://dx.doi.org/10.1007/BF00015721
[12] M. H. Ellis, G. J. Rebetzke, F. Azana, R. A. Richards and W. Spielmeyer, “Molecular Mapping of Gibberellin-Responsive Dwarfing Genes in Bread Wheat,” Theoretical and Applied Genetics, Vol. 111, 2005, pp. 423-430.
http://dx.doi.org/10.1007/s00122-005-2008-6
[13] X. P. Li, S. Q. Lan and M. J. Li, “Dwarfing Genes in Wheat,” Chinese Agriculture Press, Beijing, 2010.
[14] V. Korzun, M. S. Roder, M. W. Ganal, A. J. Worland and C. N. Law, “Genetic Analysis of the Dwarfing Gene (Rht8) Part I. Molecular Mapping of Rht8 on the Short arm of Chromosome 2D of Bread Wheat (Triticum aestivum L.),” Theoretical and Applied Genetics, Vol. 96, 1998, pp. 1104-1109. http://dx.doi.org/10.1007/s001220050845
[15] A. J. Worland, V. Korzun, M. S. Roder, M. W. Ganal and C. N. Law, “Genetic Analysis of the Dwarfing Gene (Rht8) in Wheat. Part II. The Distribution and 77 Adaptive Significance of Allelic Variants at the Rht8 Locus of Wheat as Revealed by Microsatellite Screening,” Theoretical and Applied Genetics, Vol. 96, 1998, pp. 1110-1120.
http://dx.doi.org/10.1007/s001220050846
[16] M. D. Gale and G. A. Marshall, “The Chromosomal Location of Gai1 and Rht1 Genes for Gibberellin Insensitivity and Semi-Dwarfism in a Derivative of Norin 10 Wheat,” Heredity, Vol. 37, 1976, pp. 283-289.
http://dx.doi.org/10.1038/hdy.1976.88
[17] J. A. McVittie, M. D. Gale, G. A. Marshall and B. Westcott, “The Intrachromosomal Mapping of the Norin 10 and Thom Thumb Dwarfing Gene,” Heredity, Vol. 40, 1978, pp. 67-70.
http://dx.doi.org/10.1038/hdy.1978.8
[18] P. S Baenziger, B. Moreno-Sevilla, C. J. Peterson, J. W. Schmidt, D. R. Shelton, D. D. Baltensperger, L. A. Nelson, D. V. McVey, J. E. Watkins and J. H. Hatchett, “Registration of ‘Alliance’ Wheat,” Crop Science, Vol. 35, 1995, p. 938.
http://dx.doi.org/10.2135/cropsci1995.0011183X003500030056x
[19] R. A. Graybosch, C. J. Peterson, P. S. Baenziger, L. A. Nelson, B. B. Beecher, D. D. Baltensperger and J. M. Krall, “Registration of ‘Arrowsmith’ Hard White Winter Wheat,” Crop Science, Vol. 45, 2005, pp. 1662-1663.
http://dx.doi.org/10.2135/cropsci2004.0559
[20] J. W. Schmidt, V. A. Johnson, P. J. Mattern, A. F. Dreier, D. V. McVey and H. W. Somsen, “Registration of Buckskin Wheat,” Crop Science, Vol. 16, 1976, p. 743.
http://dx.doi.org/10.2135/cropsci1976.0011183X001600050054x
[21] P. S Baenziger, B. Beecher, R. A. Graybosch, D. D. Baltensperger, L. A. Nelson, J. M. Krall, D. V. McVey, J. E. Watkins, J. H. Hatchett and M-S. Chen, “Registration of ‘Goodstreak’ Wheat,” Crop Science, Vol. 44, 2004, pp. 1473-1474.
http://dx.doi.org/10.2135/cropsci2004.1473
[22] P. S Baenziger, B. Beecher, R. A. Graybosch, D. D. Baltensperger, L. A. Nelson, D. V. McVey, J. E. Watkins, J. H. Hatchett and M.-S. Chen, “Registration of ‘Harry’ Wheat,” Crop Science, Vol. 44, 2004, pp. 1474-1475.
http://dx.doi.org/10.2135/cropsci2004.1474
[23] P. S Baenziger, B. Beecher, R. A. Graybosch, D. D. Baltensperger, L. A. Nelson, J. M. Krall, Y. Jin, J. E. Watkins, D. J. Lyon, A. R. Martin, Ming-Shun Chen and G. Bai, “Registration of ‘Infinity CL’ Wheat,” Crop Science, Vol. 46, 2006, pp. 975-977.
http://dx.doi.org/10.2135/cropsci2005.05-0044
[24] P. S Baenziger, B. Moreno-Sevilla, C. J. Peterson, D. R. Shelton, R. W. Elmore, P T. Nordquist, R. N. Klein, D. D. Baltensperger, L. A. Nelson, D. V. McVey, J. E. Watkins, J. H. Hatchett and G. Hein, “ Registration of ‘Millennium’ Wheat,” Crop Science, Vol. 41, 2001, pp. 1367-1369. http://dx.doi.org/10.2135/cropsci2001.4141367x
[25] J. W. Schmidt, V. A. Johnson, A. F. Dreier and P. J. Mattern, “Registration of Scout 66 Wheat,” Crop Science, Vol. 11, 1971, p. 138.
[26] P. S Baenziger, B. Moreno-Sevilla, R. A. Graybosch, J. M. Krall, M. J. Shipman, R. W. Elmore, R. N. Klein, D. D. Baltensperger, L. A. Nelson, D. V. McVey, J. E. Watkins and J. H. Hatchett, “Registration of ‘Wahoo’ Wheat,” Crop Science, Vol. 48, 2002, pp. 1752-1753.
http://dx.doi.org/10.2135/cropsci2002.1752
[27] C. J. Peterson, D. R. Shelton, P. S. Baenziger, D. D. Baltensperger, R. A. Graybosch, W. D. Worrall, L. A. Nelson, D. V. McVey, J. E. Watkins and J. Krall, “Registration of ‘Wesley’ Wheat,” Crop Science, Vol. 41, 2001, pp. 260-261. http://dx.doi.org/10.2135/cropsci2001.411260-ax
[28] M. Guedira, G. Brown-Guedira, D, Van Sanford, C. Sneller, E. Souza and D. Marshall, “Distribution of Rht Genes in Modern and Historic Winter Wheat Cultivars from the Eastern and Central USA,” Crop Science, Vol. 50, 2010, pp. 1811-1822.
http://dx.doi.org/10.2135/cropsci2009.10.0626
[29] R. E. Allan, O. A. Vogel and J. C. Craddock Jr., “Comparative Response to Gibberellic Acid of Dwarf, Semidwarf, and Standard Short and Tall Winter Wheat Varieties,” Agronomy Journal, Vol. 51, 1959, pp. 737-740.
http://dx.doi.org/10.2134/agronj1959.00021962005100120013x
[30] M. J. Pinthus and M. Abraham, “Effects of Light, Temperature, Gibberellin (GA3) and Their Interaction on Coleoptile and Leaf Elongation of Tall, Semi-Dwarf and Dwarf Wheat,” Plant Growth Regulations, Vol. 18, 1996, pp. 239-247. http://dx.doi.org/10.1007/BF00024388
[31] M. J. Pereira, P. L. Pfahler, R. D. Barnett, A. R. Blount, D. S. Wofford and R. C. Littell, “Coleoptile Length of Dwarf Wheat Isolines: Gibberellic Acid, Temperature, and Cultivar Interactions,” Crop Science, Vol. 42, 2002, pp. 1483-1487. http://dx.doi.org/10.2135/cropsci2002.1483
[32] M. J. Pinthus, M. D. Gale, N. E. J. Appleford and J. R. Lenton, “Effect of Temperature on Gibberellin (GA) Responsiveness and on Endogenous GA1 Content of Ttall and Dwarf Wheat Genotypes,” Plant Physiology, Vol. 90, 1989, pp. 854-859.
http://dx.doi.org/10.1104/pp.90.3.854
[33] J. P. Nitsch and C. Nitsch, “Studies on the Growth of Coleoptile and First Internode Sections. A New, Sensitive, Straight-Growth Test for Auxins,” Plant Physiology, Vol. 31, 1956, pp. 94-111.
http://dx.doi.org/10.1104/pp.31.2.94
[34] T. Yang, P. J. Davies and J. B. Reid, “Genetic Dissection of the Relative Roles of Auxin and Gibberellin in the Regulation of Stem Elongation in Intact Light-Grown Peas,” Plant Physiology, Vol. 110, 1996, pp. 1029-1034.
[35] S. S. Snapp, S. M. Swinton, R. Labarta, D. Mutch, J. R. Black, R. Leep, J. Nyiraneza and K. O’Neil, “Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches,” Agronomy Journal, Vol. 97, 2005, pp. 322-332.
[36] E. A. Oelke, E. S. Oplinger, H. Bahri, B. R. Durgan, D. H. Putnam, J. D. Doll and K. A. Kelling, “Rye,” Alternative Crops Manual, Univiversity of Minnesota and Wisconsin, 1990. www.hort.purdue.edu
[37] R. G. Robinson, “Registration of Rymin Rye,” Crop Science, Vol. 13, 1973, p. 775.
http://dx.doi.org/10.2135/cropsci1973.0011183X001300060075x
[38] D. W. S. Mok and M. C. Mok, “Cytokinins: Chemistry, Activity and Function,” CRC Press, Boca Raton, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.