Direct Transfer of GaAs Microtube Arrays onto Transparent Substrates for Imaging Neuron Outgrowth

Abstract

We introduce a direct method for transferring arrays of GaAs microtubes from an opaque substrate to a transparent glass substrate in a controlled manner. This enables us to build a platform for optical readout of the microtubes’ interaction with overgrown cellular networks. We achieve this by applying a double layer of polydimethylsiloxane (PDMS). The first PDMS layer serves as a smooth and mechanically compliant transparent substrate. The second, adhesive layer contains a mixture of PDMS and n-hexane, which creates a layer thickness smaller than the tube diameter. This will prevent the tubes from sinking into the substrate. The microtubes themselves are made of GaAs heterostructures. The direct bandgap of the material allows for the integration of embedded optical device components into the tube wall. The microtubes have diameters on the same scale as typical mouse cortical axons, being on average 1 μm. The axons can be grown through the tubes, hence maximally enhancing the capacitive coupling of the signal source (axon) and the electrode (tube). Although the tube material is toxic to cells, we are able to overcome this by a parylene-coating step.

Share and Cite:

A. Koitmäe, C. S. Bausch, E. Stava, D. Sonnenberg, W. Hansen and R. Blick, "Direct Transfer of GaAs Microtube Arrays onto Transparent Substrates for Imaging Neuron Outgrowth," Soft Nanoscience Letters, Vol. 3 No. 4, 2013, pp. 79-82. doi: 10.4236/snl.2013.34014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] E. J. Smith, W. Xi, D. Makarov, I. Moench, S. Harazim, V. A. Bolanos Quinones, C. K. Schmidt, Y. Mei, S. Sancheza and O. G. Schmidt, “Lab-in-a-Tube: Ultracompact Components for On-Chip Capture and Detection of Individual Micro-/Nanoorganisms,” Lab on a Chip, Vol. 12, No. 11, 2012, pp. 1917-1931. http://dx.doi.org/10.1039/c2lc21175k
[2] C. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, C. Heyn, D. Heitmann and T. Kipp, “Optical Microcavities Formed by Semiconductor Microtubes Using a Bottlelike Geometry,” Physical Review Letters, Vol. 101, No. 12, 2008, Article ID: 127403. http://dx.doi.org/10.1103/PhysRevLett.101.127403
[3] T. Kipp, H. Welsch, C. Strelow, C. Heyn and D. Heitmann, “Optical Modes in Semiconductor Microtube Ring Resonators,” Physical Review Letters, Vol. 96, No. 7, 2006, Article ID: 077403. http://dx.doi.org/10.1103/PhysRevLett.96.077403
[4] S. Schwaiger, M. Broll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark, D. Stickler, D. Heitmann and S. Mendach, “Rolled-Up Three-Dimensional Metamaterials with a Tunable Plasma Frequency in the Visible Regime,” Physical Review Letters, Vol. 102, No. 16, 2009, Article ID: 163903. http://dx.doi.org/10.1103/PhysRevLett.102.163903
[5] M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick and J. C. Williams, “Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth,” American Chemical Society Nano, Vol. 5, 2011, Article ID: 2447.
[6] C. S. Bausch, A. Koitmae, E. Stava, A. Price, P. J. Resto, Y. Huang, D. Sonnenberg, Y. Stark, C. Heyn, J. C. Williams, E. W. Dent and R. H. Blick, “Guided Neuronal Growtch on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes”.
[7] E. J. Smith, S. Schulze, S. Kiravittaya, Y. Mei, S. Sanchez and O. G. Schmidt, “Lab-in-a-Tube: Detection of Individual Mouse Cells for Analysis in Flexible Split-Wall Microtube Resonator Sensors,” Nano Letters, Vol. 11, No. 10, 2011, pp. 4037-4042. http://dx.doi.org/10.1021/nl1036148
[8] H. Tatsumi, Y. Katayama and M. Sokabe, “Attachment of Growth Cones on Substrate Observed by Multi-Mode Light Microscopy,” Neuroscience Research, Vol. 35, No. 3, 1999 pp. 197-206. http://dx.doi.org/10.1016/S0168-0102(99)00085-1
[9] C. Strelow, C. M. Schultz, H. Rehberg, M. Sauer, H. Welsch, A. Stemmann, C. Heyn, D. Heitmann and T. Kipp, “Light Confinement and Mode Splitting in Rolled-Up Semiconductor Microtube Bottle Resonators,” Physical Review B, Vol. 85, No. 15, 2011, Article ID: 155329. http://dx.doi.org/10.1103/PhysRevB.85.155329
[10] V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chehovskiy, V. V. Preobrazhenskii, M. A. Putyato and T. A. Gavrilova, “Free-standing and Overgrown InGaAs/-GaAs Nanotubes, Nanohelices and their Arrays,” Physica E, Vol. 6, No. 1-4, 2000, pp. 828-831. http://dx.doi.org/10.1016/S1386-9477(99)00249-0
[11] M. Grandmann, “Nanoscroll Formation from Strained Layer Heterostructures,” Applied Physics Letters, Vol. 83, No. 12, 2003, pp. 2444-2446. http://dx.doi.org/10.1063/1.1613366
[12] O. Schumacher, S. Mendach, H. Welsch, A. Schramm, C. Heyn and W. Hansen, “Lithographically Defined metal-Semiconductor-Hybrid Nanoscrolls,” Applied Physics Letters, Vol. 86, No. 14, 2005, Article ID: 143109. http://dx.doi.org/10.1063/1.1897056
[13] A. L. Thangawng, M. A. Swartz, M. R. Glucksberg and R. S. Ruoff, “Bond-Detach Lithography: A Method for Micro/Nanolithography by Precision PDMS Patterning,” Small, Vol. 3, No. 1, 2007, pp. 132-138. http://dx.doi.org/10.1002/smll.200500418
[14] M. Omura, A. Tanaka, M. Hirata, M. Zhao, Y. Makita, N. Inoue, K. Gotoh and N. Ishinishi, “Testicular Toxicity of Gallium Arsenide, Indium Arsenide, and Arsenic Oxide in Rats by Repetitive Intratracheal Instillation,” Toxicological Sciences, Vol. 32, No. 1, 1996, pp. 72-78.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.