Legal Issues and Scientific Constraints in the Environmental Assessment of the Deepwater Horizon Oil Spill in Mexico Exclusive Economic Zone (EEZ) in the Gulf of Mexico

Abstract

The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capacity of the pelagic and benthic realms of this Large Marine Ecosystem. Many are the ecological services provided by its waters (fisheries, tourism, aquaculture and fossil fuel reserves) to neighboring countries (US, Mexico and Cuba). However, the unprecedented volumes of hydrocarbons, gas and chemical dispersants (Corexit) introduced in the system, represent ecological stressors whose deleterious effects are still the subject of civil claims and scientific controversy. Presumably, the short scale effects were confined to the Gulf’s northeastern shallow waters, and the combined actions of weathering, biodegradation, and oil recovery left the system almost under pre-spill conditions. Unfortunately, surface and subsurface oil plumes were detected in the spill aftermath, and their dispersion trajectories threatened Mexico EEZ. Surface oil slicks were detected in the pristine waters of northern Yucatán, while subsurface oil plumes from the Macondo’s well blowout were dangerously advancing southwest towards key fishing grounds in the northwestern GoM. This disaster prompted the Mexican government to implement an ambitious ocean monitoring program adopting a bottom-up approach focused on building a base line for more than 42 physicochemical and biological variables for water, sediment and biota from the continental shelf-slope region of the NW GoM. Technological constraints have precluded systematic observations in the vast Mexican EEZ that could discriminate natural variability and oil seep emissions from antropic disturbances. Therefore, preliminary risk analyses relied on seasonal and historical records. Two years of field observations revealed subtle environmental changes in the studied area attributed to antropic disturbances. Waters maintained oligotrophic conditions and zooplankton and benthic infaunal biomass were also poor. Biomarkers in sediments and biota did not exceed EPA’s benchmarks, and sediment’s fingerprinting (δ13C) indicated marine carbon sources. Geomarkers revealed an active transport from the Mississippi towards the NW GoM of phyllosilicates bearing a weathered oil coating. Consequently, shelf and slope sediment toxicity begins to show an increasing trend in the region. The complexity of hydrocarbons bioaccumulation and biodegradation processes in deep waters of the GoM seems to indicate that meso-and large-scale observations may prove to be essential in understanding the capacity of the GoM to recover its ecological stability.

Share and Cite:

L. Soto and A. Vázquez-Botello, "Legal Issues and Scientific Constraints in the Environmental Assessment of the Deepwater Horizon Oil Spill in Mexico Exclusive Economic Zone (EEZ) in the Gulf of Mexico," International Journal of Geosciences, Vol. 4 No. 5B, 2013, pp. 39-45. doi: 10.4236/ijg.2013.45B007.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] “Deepwater Horizon Oil Spill Principal Investigator Workshop: Final Report,” National Science and Technology Council, Subcommittee on Ocean Science and Technology, Washington, DC, 2012. http://www.marine.usf.edu/conferences/fio/NSTC-SOST-PI-2011/documents/SOST_2011_DWH_Workshop_Final_Report.pdf
[2] J. Lubchenco, M. McNutt, B. Lehr, M. Sogge, M. Miller, S. Hammond and W. Conner, “Deepwater Horizon/BP Oil Budget: What Happened to the Oil?” Silver Spring, MD: National Oceanic and Atmospheric Administration, 2010. http://www.noaanews.noaa.gov/stories2010/PDFs/OilBudget_description_%2083final.pdf
[3] P. S. Daling, “Weathering Properties at Sea of the Macondo MC252 Crude Oil,” Gulf Oil Spill SETAC Focused Topic Meeting, Merida, 2011, p. 39.
[4] K. M. Kleinow, A. Bui, L. J. Thibodeaux and S. M. Fritz-Kleinow, “Effect of the Dispersant Corexit upon Bioavailability and Toxicity of Deep Horizon Light Crude Oil Emulsion Components to Developing Fish,” Gulf Oil Spill SETAC Focused Topic Meeting, Merida, 2011, p. 25.
[5] B. A, Muhling, et al., “Overlap between Atlantic bluefin tuna spawning grounds and observed Deepwater Horizon surface oil in the northern Gulf of Mexico,” Marine Pollution Bulletin, Vol. 64, No. 4, 2012, pp. 679-687. http://dx.doi.org/10.1016/j.marpolbul.2012.01.034
[6] P. D. Boehm, et al., “Polynuclear Aromatic Hydrocarbons from MC252 in the Water Column: Preliminary Exposure Assessment, Weathering, and Biodegradation,” Gulf Oil Spill SETAC Focused Topic Meeting, Merida, 2011, p. 40.
[7] S. E. Allan, B. W. Smith and K. A. Anderson, “Impact of the Deepwater Horizon Oil Spill on Bioavailable Polycyclic Aromatic Hydrocarbons in Gulf of Mexico Coastal Waters,” Environmental Science & Technology, Vol. 46, No. 4, 2012, pp. 2033-2039. http://dx.doi.org/10.1021/es202942q
[8] K. Sherman, “Sustainability, Biomass Yield, and Health of Coastal Ecosystems: An Ecological Perspective,” Marine Ecology Progress Series, No. 112, 1994, pp. 277-301. http://dx.doi.org/10.3354/meps112277
[9] A. R. Diercks, et al., “Characterization of Subsurface Polycyclic Aromatic Hydrocarbons at the Deepwater Horizon Site,” Geophysical Research Letters, Vol. 37, 2010, pp. 1-6. http://dx.doi.org/10.1029/2010GL045046
[10] T. C. Hazen, et al., “Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria,” Science, Vol. 330, No. 6001, 2010, pp. 204-208. http://dx.doi.org/10.1126/science.1195979
[11] R. Camilli, et al., “Tracking Hydrocarbon Plume Transport and Biodegradation at Deepwater Horizon,” Science Express, 2010. http://dx.doi.org/10.1126/science.1195223
[12] C. M. Reddy, et al., “Composition and Fate of Gas and Oil Released to the Water Column during the Deepwater Horizon Oil Spill,” Proceedings of the National Academy of Sciences, Vol. 109, No. 50, 2012, pp. 20229-20234. http://dx.doi.org/10.1073/pnas.1101242108
[13] J. Zavala-Hidalgo, S. L. Morey and J. J. O’Brien, “Seasonal Circulation on the Western Shelf of the Gulf of Mexico Using a High-Resolution Numerical Model,” Journal of Geophysical Research, Vol. 108, 2003, pp. 1-19. http://dx.doi.org/10.1029/2003JC001879
[14] J. Zavala-Hidalgo, R. Romero-Centeno, E. Galvanovskis Romero, M. L. Lagunas Modesto and M. E. Osorio Tai, “Riesgo Ecológico y Modelo Predictivo de la Trayectoria de la Pluma Submarina de Hidrocarburo Procedente del Pozo Macondo (BP), Luisiana en la Zona Económica Exclusiva de México, Golfo de México,” Rep. Tec. CCA.UNAM, 2013, 35 p.
[15] I. R. MacDonald, “Natural Oil Spills,” Scientific American, No. 279, 2012, pp. 56-61.
[16] D. L. Valentine, et al., “Propane Respiration Jump-Starts Microbial Response to a Deep Oil Spill,” Science, Vol. 330, No. 6001, 2010, pp. 208-211. http://dx.doi.org/10.1126/science.1196830
[17] D. L. Valentine, et al., “Dynamic Autoinoculation and the Microbial Ecology of a Deep Water Hydrocarbon Irrup- tion,” Proceedings of the National Academy of Sciences, 2012, in press.
[18] T. B. Ryerson, et al., “Chemical Data Quantify Deepwater Horizon Hydrocarbon Flow Rate and Environmental Distribution,” Proceedings of the National Academy of Sciences, 2012, in press. http://dx.doi.org/10.1073/pnas.1110564109
[19] A. V. Botello, et al., “Golfo de México: Contaminación e Impacto Ambiental: Diagnó stico y Tendencias,” Campeche: Universidad Autó noma de Campeche, Centro de Ecologóa, Pesquerías y Oceanografía del Golfo de México, Univ. Nal. Autó. Méx., Inst. Cien. Mary Limnol., Inst. Nal. Ecol., 2005, p. 696.
[20] L. A. Soto and C. González Macías, “PEMEX y la Salud Ambiental de la Sonda de Campeche, México,” Luis A. Soto y Carmen González Macías, Eds., Batelle-IMP- UAM-UNAM, 2009, 336 p.
[21] L. A. Soto, et al., “Marco Ambiental de las Condiciones Oceanográficas En El Sector NW de la Zee de México en El Golfo de México (Marzee),” Rep. Tec. I. UNAM-INE, 2011, 430 p.
[22] L. A. Soto, et al., “Marco Ambiental de las Condiciones Oceanográficas En El Sector NW de la Zee De México En El Golfo De México (Marzee),” Rep. Tec. II. UNAM-INE, 2012, 430 p.
[23] N. N. Rabalais and R. E. Turner, “Hypoxia in the Northern Gulf of Mexico: Description causes and changes, in Coastal Hypoxia: Consequences for Living Resources and Ecosystems,” In: N. N. Rabalais and R. E. Turner, Eds., Coastal Estuarine Studies, Vol. 58, AGU, Washington, D. C., 2001, pp. 1-36. http://dx.doi.org/10.1029/CE058p0001
[24] G. Ponce-Vélez, A. V. Botello and G. Díaz-González, “Organic and Inorganic Pollutants in Marine Sediments from Northern and Southern Continental Shelf of the Gulf of Mexico,” International Journal of Environment and Pollution, Vol. 26, 2006, pp. 295-311. http://dx.doi.org/10.1504/IJEP.2006.009113
[25] U. R. Sumaila, et al., “Impact of the Deepwater Horizon Well Blowout on the Economics of US Gulf Fisheries,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 69, No. 3, 2012, pp. 499-510. http://dx.doi.org/10.1139/f2011-171
[26] Sistema Satelital de Monitoreo Oceánico de la CON-ABIO: Reporte No. 1-CONABIO. http://www.conabio.gob.mx/informacion/geo_espanol/modis/oceano.html
[27] S. S. Figueroa, “Evaluación de la Toxicidad de Sedimentos,” In: L. A. Soto, Ed., Proyecto “Marco Ambiental de las Condiciones Oceanográficas en el Sector NW de la zee de México en el Golfo de México (Marzee II)”, Rep. Tec. Ii. Unam. Inecc, México, 2012, 430 p.
[28] Greer, et al., “Is CE-WAF Prepared in the Lab Suitable for Predicting Toxicity to Herring Embryos?” Gulf Oil Spill SETAC Focused Topic Meeting, Merida, 2011, p. 34.
[29] S. Mitra, et al., “Macondo-1 Well Oil-Derived Polycyclic Aromatic Hydrocarbons in Mesozooplankton from the Northern Gulf of Mexico,” Geophysical Research Letters, Vol. 39, No. 1, 2012, pp. 1-6.
[30] T. C. Hazen, et al., “Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria,” Science Express, 2010, pp. 1-10.
[31] D. L. Valentine, et al., “Response to a Deep Oil Spill Propane Respiration Jump—Starts Microbial,” Science, Vol. 330, No. 208, 2010, pp. 208-211. http://dx.doi.org/10.1126/science.1196830
[32] A. V. Botello, et al., “Contaminación Marina,” L. A. Soto, Ed., PROYECTO In: L. A. Soto, Ed., Proyecto “Marco Ambiental de las Condiciones Oceanográficas en el Sector NW de la zee de México en el Golfo de México (Marzee II)”, Rep. Tec II. UNAM. INECC, México, 2012, 436 p.
[33] G. Núñez-Nogueira, et al., “Determinación de Metales en Biota” L. A. Soto, Ed., In: L. A. Soto, Ed., Proyecto “Marco Ambiental de las Condiciones Oceanográficas en el Sector NW de la zee de México en el Golfo de México (Marzee II)”, Rep. Tec II. UNAM. INECC, México, 2012, 436 p.
[34] A. Díaz de León, J. I. Fernández, P. álvarez-Torres, O. Ramírez-Flores and L. G. López-Lemus, “La Sustentabilidad de las Pesquerías del Golfo de México,” In: M. Caso, I. Pisanty and E. Ezcurra, Eds., Diagnóstico Ambiental del Golfo de México, SEMARNAT-INE-Harte Res. Inst., Vol. I-II, 2004, pp. 727-755.
[35] Díaz-Guzmán, et al., “Posibles Efectos del Derrame de Petróleo del Golfo de México en la Pesquería Mexicana del atún,” El Vigía, Vol. 15, No. 37, 2010, pp. 11-16.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.