Reference gene selection for quantitative PCR studies in bovine neutrophils

Abstract

Reference genes are essential for studying mRNA expression with quantitative PCR (qPCR). We investigated 11 candidate whole-blood neutrophil reference genes (ACTB, B2M, G6PD, GAPDH, GYPC, HPRT, PGK1, RPL19, SDHA, TFRC, and YWHAZ) for beef calves, both males and females, with or without selenium supplementation. Initial screening was based on gene expression level (<28 Cq cycles), variability (SD < 1.5 Cq cycles), excluded GYPC and TFRC from further analysis. Expression stability of the remaining genes was evaluated using four software programs: geNorm, NormFinder, BestKeeper, and the comparative delta Cq method. The neutrophil reference genes, YWHAZ, PGK1, and RPL19, consistently ranked among the top four most stable genes under these experimental conditions. The commonly used reference genes, ACTB and HPRT, were not reliable, underscoring the need to validate neutrophil reference genes under different experimental conditions. Multiple reference genes rather than a single gene may provide more robust and reliable results. The best pair of reference genes in whole-blood neutrophils from beef calves overall was PGK1|YWHAZ.  

Share and Cite:

Vorachek, W. , Bobe, G. and Hall, J. (2013) Reference gene selection for quantitative PCR studies in bovine neutrophils. Advances in Bioscience and Biotechnology, 4, 6-14. doi: 10.4236/abb.2013.410A3002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bustin, S.A. (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Molecular Endocrinology, 25, 169-193. http://dx.doi.org/10.1677/jme.0.0250169
[2] Suzuki, T., Higgins, P.J. and Crawford, D.R. (2000) Control selection for RNA quantitation. Biotechniques, 29, 332-337.
[3] Warrington, J.A., Nair, A., Mahadevappa, M. and Tsyganskaya, M. (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/ maintenance genes. Physiological Genomics, 2, 143-147.
[4] Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A. and Heinen, E. (1999) Housekeeping genes as internal standards: Use and limits. Journal of Biotechnology, 75, 291-295. http://dx.doi.org/10.1016/S0168-1656(99)00163-7
[5] Huggett, J., Dheda, K., Bustin, S. and Zumla, A. (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes & Immunity, 6, 279-284. http://dx.doi.org/10.1038/sj.gene.6364190
[6] Hugejiletu, H., Bobe, G., Vorachek, W.R., Gorman, M.E., Mosher, W.D., Pirelli, G.J. and Hall, J.A. (2013) Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep. Biological Trace Element Research, 154, 28-44. http://dx.doi.org/10.1007/s12011-013-9716-6
[7] Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., Weinrauch, Y. and Zychlinsky, A. (2004) Neutrophil extracellular traps kill bacteria. Science, 303, 1532-1535. http://dx.doi.org/10.1126/science.1092385
[8] Buchanan, J.T., Simpson, A.J., Aziz, R.K., Liu, G.Y., Kristian, S.A., Kotb, M., Feramisco, J. and Nizet, V. (2006) DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Current Biology, 16, 396-400. http://dx.doi.org/10.1016/j.cub.2005.12.039
[9] Beiter, K., Wartha, F., Albiger, B., Normark, S., Zychlinsky, A. and Henriques-Normark, B. (2006) An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Current Biology, 16, 401-407. http://dx.doi.org/10.1016/j.cub.2006.01.056
[10] Zhang, X., Ding, L. and Sandford, A.J. (2005) Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Molecular Biology, 6, 4. http://dx.doi.org/10.1186/1471-2199-6-4
[11] Ledderose, C., Heyn, J., Limbeck, E. and Kreth, S. (2011) Selection of reliable reference genes for quantitative realtime PCR in human T cells and neutrophils. BMC Research Notes, 4, 427. http://dx.doi.org/10.1186/1756-0500-4-427
[12] Peletto, S., Bertuzzi, S., Campanella, C., Modesto, P., Maniaci, M.G., Bellino, C., Ariello, D., Quasso, A., Caramelli, M. and Acutis, P.L. (2011) Evaluation of internal reference genes for quantitative expression analysis by real-time PCR in ovine whole blood. International Journal of Molecular Sciences, 12, 7732-7747. http://dx.doi.org/10.3390/ijms12117732
[13] Vorachek, W.R., Hugejiletu, Bobe, G. and Hall, J.A. (2013) Reference gene selection for quantitative PCR studies in sheep neutrophils. International Journal of Molecular Sciences, 14, 11484-11495. http://dx.doi.org/10.3390/ijms140611484
[14] De Ketelaere, A., Goossens, K., Peelman, L. and Burvenich, C. (2006) Technical note: Validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. Journal of Dairy Science, 89, 4066-4069. http://dx.doi.org/10.3168/jds.S0022-0302(06)72450-X
[15] Bougarn, S., Cunha, P., Gilbert, F.B., Meurens, F. and Rainard, P. (2011) Technical note: Validation of candidate reference genes for normalization of quantitative PCR in bovine mammary epithelial cells responding to inflammatory stimuli. Journal of Dairy Science, 94, 2425-2430. http://dx.doi.org/10.3168/jds.2010-3859
[16] Saremi, B., Sauerwein, H., Danicke, S. and Mielenz, M. (2012) Technical note: Identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. Journal of Dairy Science, 95, 3131-3138. http://dx.doi.org/10.3168/jds.2011-4803
[17] Varshney, N., Mohanty, A.K., Kumar, S., Kaushik, J.K., Dang, A.K., Mukesh, M., Mishra, B.P., Kataria, R., Kimothi, S.P., Mukhopadhyay, T.K., Malakar, D., Prakash, B.S., Grover, S. and Batish, V.K. (2012) Selection of suitable reference genes for quantitative gene expression studies in milk somatic cells of lactating cows (Bos indicus). Journal of Dairy Science, 95, 2935-2945. http://dx.doi.org/10.3168/jds.2011-4442
[18] Brym, P., Rusc, A. and Kaminski, S. (2013) Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Veterinary Immunology and Immunopathology, 153, 302-307. http://dx.doi.org/10.1016/j.vetimm.2013.03.004
[19] Perez, R., Tupac-Yupanqui, I. and Dunner, S. (2008) Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Molecular Biology, 9, 79. http://dx.doi.org/10.1186/1471-2199-9-79
[20] Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, RESEARCH0034.
[21] Andersen, C.L., Jensen, J.L. and Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcriptionPCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245-5250. http://dx.doi.org/10.1158/0008-5472.CAN-04-0496
[22] Pfaffl, M.W., Tichopad, A., Prgomet, C. and Neuvians, T.P. (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnology Letters, 26, 509-515. http://dx.doi.org/10.1023/B:BILE.0000019559.84305.47
[23] Silver, N., Best, S., Jiang, J. and Thein, S.L. (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology, 7, 33. http://dx.doi.org/10.1186/1471-2199-7-33
[24] Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J. and Wittwer, C.T. (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611-622. http://dx.doi.org/10.1373/clinchem.2008.112797
[25] Tao, W., Mallard, B., Karrow, N. and Bridle, B. (2004) Construction and application of a bovine immune-endocrine cDNA microarray. Veterinary Immunology and Immunopathology, 101, 1-17. http://dx.doi.org/10.1016/j.vetimm.2003.10.011
[26] Hall, J.A., Bobe, G., Hunter, J.K., Vorachek, W.R., Stewart, W.C., Vanegas, J.A., Estill, C.T., Mosher, W.D. and Pirelli, G.J. (2013) Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS One, 8, e58188. http://dx.doi.org/10.1371/journal.pone.0058188
[27] Pfister, C., Tatabiga, M.S. and Roser, F. (2011) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in human meningiomas and arachnoidea. BMC Research Notes, 4, 275. http://dx.doi.org/10.1186/1756-0500-4-275
[28] Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 8, R19. http://dx.doi.org/10.1186/gb-2007-8-2-r19
[29] Niemantsverdriet, M., Wagner, K., Visser, M. and Backendorf, C. (2008) Cellular functions of 14-3-3 zeta in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene, 27, 1315-1319. http://dx.doi.org/10.1038/sj.onc.1210742

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.