Improved Hemolytic Performance of Blood Pump with Fluorine-Doped Hydrogenated Amorphous Carbon Coating

Abstract

Fluorine-doped hydrogenated amorphous carbon (a-C:H:F) film was deposited on a flow-straightener, impeller and diffuser surface (SUS 304) of an enclosed-impeller type flow blood pump using the ionization deposition method with a source gas of C6F5H. The surface characteristics of the a-C:H:F film were examined using atomic force microscopy, X-ray photoelectron spectroscopy, and measurements of surface roughness, friction and surface potential. The a-C:H:F film tends to increase surface roughness and the negative surface charge. In addition, the surface energy and friction decrease with fluorine dopant in the a-C:H film. To estimate the hemolytic performance of a blood pump with the a-C:H:F film coating, the amount of hemolysis was measured using a mock circulatory system (in vitro test) with 500 mL of pig blood containing sodium citrate. In vitro test was conducted for 180 min with the blood flow and pump head maintained at 5 L/min and 100 mmHg, respectively. The a-C:H:F film coating reduced the amount of hemolysis and improved the hemolytic performance. Decreasing the surface energy and negative surface charge of the a-C:H:F film contributes to the improvement of the hemolytic performance. The a-C:H:F film coating is thus expected to be utilized in medical technology as a surface coating technology for artificial heart blood pumps.

Share and Cite:

Y. Ohgoe, M. Hiratsuka, H. Sumikura, K. Fukunaga, A. Homma, K. Hirakuri, A. Funakubo and Y. Fukui, "Improved Hemolytic Performance of Blood Pump with Fluorine-Doped Hydrogenated Amorphous Carbon Coating," Advances in Chemical Engineering and Science, Vol. 3 No. 3C, 2013, pp. 10-16. doi: 10.4236/aces.2013.33A3004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Wu, Z. Wang and X. Lv, “Design and Simulation of Axial Flow Maglev Blood Pump,” International Journal of Information Engineering and Electronic Business, Vol. 3, No. 2, 2011, pp. 42-48. doi:10.5815/ijieeb.2011.02.06
[2] H.-M. Fan, F.-W. Hong, G.-P. Zhang, L. Ye and Z.-M. Liu, “Applications of CFD Technique in the Design and Flow Analysis of Implantable Axial Flow Blood Pump,” Journal of Hydrodynamics, Vol. 22, No. 4, 2010, pp. 518525. doi:10.1016/S1001-6058(09)60084-6
[3] F. Wang, Q. Wu, T. Jing, L. Liu and K. Qian, “Flow Patterns and Shear Stress Investigation and in Vitro Studies of Blood Pump,” Proceedings of 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010), Yantai, China, 16-18 October 2010, pp. 269-272.
[4] U. Corrà, M. Pistono, A. Mezzani, M. Gnemmi, F. T. Genta, R. Caruso and P. Giannuzzi, “Cardiovascular Prevention and Rehabilitation for Patients with Ventricular Assist Device from Exercise Therapy to Long-Term Therapy. Part I: Exercise Therapy,” Monaldi Archives for Chest Disease, Vol. 76, No. 1, 2011, pp. 27-32.
[5] T. Jaarsma, J. M. Beattie, M. Ryder, F. H. Rutten, T. McDonagh, P. Mohacsi, S. A. Murray, T. Grodzicki, I. Bergh, M. Metra, I. Ekman, C. Angermann, M. Leventhal, A. Pitsis, S. D. Anker, A. Gavazzi, P. Ponikowski, K. Dickstein, E. Delacretaz, L. Blue, F. Strasser and J. McMurray, “Palliative Care in Heart Failure: A Position Statement from the Palliative Care Workshop of the Heart Failure Association of the European Society of Cardiology,” European Journal of Heart Failure, Vol. 11, No. 5, 2009, pp. 433-443. doi:10.1093/eurjhf/hfp041
[6] S. Westaby, “Lifetime Circulatory Support Must Not Be Restricted to Transplant Centers Review Article,” Heart Failure Clinics, Vol. 3, No. 3, 2007, pp. 369-375. doi:10.1016/j.hfc.2007.05.008
[7] Y. Mitamura, K. Kido, T. Yano, D. Sakota, R. Yozu, E. Okamoto, S. Murabaya and I. Nishimura, “Mechanically Non-contact Axial Flow Blood Pump,” Journal Biocybernetics and Biomedical Engineering, Vol. 27, No. 1-2, 2007, pp. 139-146.
[8] Y. Shi, A. G. Brown, P. V. Lawford, A. Arndt, P. Nuesser and D. R. Hose, “Computational Modelling and Evaluation of Cardiovascular Response under Pulsatile Impeller Pump Support,” Interface Focus, Vol. 1, No. 3, 2011, pp. 320-337. doi:10.1098/rsfs.2010.0039
[9] H. M. Reul, M. Akdis, “Blood Pumps for Circulatory Support,” Perfusion, Vol. 15, No. 4, 2000, pp. 295-311. doi:10.1177/026765910001500404
[10] T. Yamane, O. Maruyama, M. Nishida and R. Kosaka, “Research and Development of a Monopivot Centrifugal Blood Pump for Clinical Use—Collaboration for a Product between Medical and Engineering Teams,” Synthesiology, Vol. 5, No. 1, 2012, pp. 17-24. doi:10.5571/synth.5.16
[11] O. Maruyama, M. Nishida, T. Yamane, I. Oshima, Y. Adachi and T. Masuzawa, “Hemolysis Resulting from Surface Roughness Under Shear Flow Conditions Using a Rotational Shear Stressor,” Artificial Organs, Vol. 30, No. 5, 2006, pp. 365-370. doi:10.1111/j.1525-1594.2006.00227.x
[12] W. K. Chan, Y. W. Wong, Y. Ding, L. P. Chua and S. C. Yu, “Numerical Investigation of the Effect of Blade Geometry on Blood Trauma in a Centrifugal Blood Pump,” Artificial Organs, Vol. 26, No. 9, 2002, pp. 785-793. doi:10.1046/j.1525-1594.2002.06954.x
[13] L. B. Leverett, J. D. Hellums, C. P. Alfrey and E. C. Lynch, “Red Blood Cell Damage by Shear Stress,” Biophysical Journal, Vol. 12, No. 3, 1972, pp. 257-273. doi:10.1016/S0006-3495(72)86085-5
[14] W. J. Ma, A. J. Ruys, R. S. Mason, P. J. Martin, A. Bendavid, Z. Liu, M. Ionescu and H. Zreiqat, “DLC Coatings: Effects of Physical and Chemical Properties on Biological Response,” Biomaterials, Vol. 28, No. 9, 2007, pp. 16201628. doi:10.1016/j.biomaterials.2006.12.010
[15] Y. Cheng and Y. F. Zheng, “The Corrosion Behavior and Hemocompatibility of TiNi Alloys Coated with DLC by Plasma Based Ion Implantation,” Surface and Coatings Technology, Vol. 200, No. 14-15, 2006, pp. 4543-4548. doi:10.1016/j.surfcoat.2005.03.039
[16] J. Robertson, “Diamond-Like Amorphous Carbon,” Materials Science and Engineering R, Vol. 37, No. 4-6, 2002, 129-281. doi:10.1016/S0927-796X(02)00005-0
[17] M. Jelínek, T. Kocourek, J. Remsa, J. Miksovsky, J. Zemek, K. Smetana Jr., B. Dvoˇránková and T. Luxbacher, “Diamond/Graphite Content and Biocompatibility of DLC Films Fabricated by PLD,” Applied Physics A, Vol. 101, No. 4, 2010, pp. 579-583. doi:10.1007/s00339-010-5912-9
[18] J. M. Lackner and W. Waldhauser, “Diamond and Diamond-Like Carbon Coated Surfaces as Biomaterials,” BHM, Vol. 155, No. 11, 2010, pp. 528-533.
[19] R. K. Roy, Sk. F. Ahmed, J. W. Yi, M.-W. Moon, K.-R. Lee and Y. Jun, “Improvement of Adhesion of DLC Coating on Nitinol Substrate by Hybrid Ion Beam Deposition Technique,” Vacuum, Vol. 83, No. 9, 2009, pp. 1179-1183. doi:10.1016/j.vacuum.2009.03.005
[20] R. K. Roy, H. W. Choi, J. W. Yi, M. W. Moon, K. R. Lee, D. K. Han, J. H. Shin, A. Kamijo and T. Hasebe, “Hemocompatibility of Surface-Modified, Silicon-Incorporated, Diamond-like Carbon Films,” Acta Biomaterialia, Vol. 5, No. 1, 2009, pp. 249-256. doi:10.1016/j.actbio.2008.07.031
[21] H. C. Cheng, S. Y. Chiou, C. M. Liu, M. H. Lin, C. C. Chen and K. L. Ou, “Effect of Plasma Energy on Enhancing Biocompatibility and Hemocompatibility of Diamond-Like Carbon Film with Various Titanium Concentrations,” Journal of Alloys and Compounds, Vol. 477, No. 1-2, 2009, pp. 931-935. doi:10.1016/j.jallcom.2008.11.043
[22] B. O’Brien and W. Carroll, “The Evolution of Cardiovascular Stent Materials and Surfaces in Response to Clinical Drivers: A Review,” Acta Biomaterialia, Vol. 5, No. 1, 2009, pp. 945-958. doi:10.1016/j.actbio.2008.11.012
[23] T. Hasebe, S. Yohena, A. Kamijo, Y. Okazaki, A. Hotta, K. Takahashi and T. Suzuki, “Fluorine Doping into Diamond-Like Carbon Coatings Inhibits Protein Adsorption and Platelet Activation,” Journal of Biomedical Materials Research Part A, Vol. 83, No. 4, 2007, pp. 1192-1199. doi:10.1002/jbm.a.31340
[24] R. K. Roy and K. R. Lee, “Biomedical Applications of Diamond-Like Carbon Coatings: A Review,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 83B, No. 1, 2007, pp. 72-84. doi:10.1002/jbm.b.30768
[25] T. Lewis, C. Griffith, M. Gallo and M. Weinbren, “A Modified ATP Benchmark for Evaluating the Cleaning of Some Hospital Environmental Surfaces,” Journal of Hospital Infection, Vol. 69, No. 2, 2008, pp. 156-163. doi:10.1016/j.jhin.2008.03.013
[26] N. Hattori, M. O. Nakajima, K. O’hara and T. Sawai, “Novel Antibiotic Susceptibility Tests by the ATP-Bioluminescence Method Using Filamentous Cell Treatment,” Antimicrobial Agents and Chemotherapy, Vol. 42, No. 6, 1998, pp. 1406-1411.
[27] O. Maruyama, Y. Numata, M. Nishida, T. Yamane, I. Oshima, Y. Adachi and T. Masuzawa, “Hemolysis Caused by Surface Roughness under Shear Flow,” Journal of Artificial Organs, Vol. 8, No. 4, 2005, pp. 228-236. doi:10.1007/s10047-005-0316-x
[28] G. Q. Yu, B. K. Tay, Z. Sun and L. K. Pan, “Properties of Fluorinated Amorphous Diamond Like Carbon Films by PECVD,” Applied Surface Science, Vol. 219, No. 3-4, 2003, pp. 228-237. doi:10.1016/S0169-4332(03)00644-5
[29] M. H. Ahmed, J. A. Byrne and J. McLaughlin, “Evaluation of Glycine Adsorption on Diamond Like Carbon (DLC) and Fluorinated DLC Deposited by Plasma-Enhanced Chemical Vapour Deposition (PECVD),” Surface and Coatings Technology, Vol. 209, 2012, pp. 8-14. doi:10.1016/j.surfcoat.2012.07.011
[30] A. Bendavid, P.J. Martin, L. Randeniya, M.S. Amin and R. Rohanizadeh, “The Properties of Fluorine-Containing Diamond-Like Carbon Films Prepared by Pulsed DC Plasma-Activated Chemical Vapour Deposition,” Diamond and Related Materials, Vol. 19, No. 12, 2010, pp. 1466-1471. doi:10.1016/j.diamond.2010.10.001
[31] S. C. Trippea, R. D. Mansano, F. M. Costa and R. F. Silva, “Mechanical Properties Evaluation of Fluor-Doped Diamond-Like Carbon Coatings by Nanoindentation,” Thin Solid Films, Vol. 446, No. 1, 2004, pp. 85-90. doi:10.1016/j.tsf.2003.08.069

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.