Synergistic interaction between C5a and NOD2 signaling in the regulation of chemokine expression in RAW 264.7 macrophages

Abstract

The innate immune response is a complex process involving multiple pathogen-recognition receptors, including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors. Complement is also a critical component of innate immunity. While complement is known to interact with TLR-mediated signals, the interactions between NOD-like receptors and complement are not well understood. Here we report a synergistic interaction between C5a and Nod2 signaling in RAW 264.7 marophages. Long-term treatment with muramyl dipeptide (MDP), a NOD2 ligand, enhanced C5a-mediated expression of chemokine mRNAs in RAW 264.7 cells. This response was dependent on NOD2 expression and was associated with a decrease in expression of C5L2, a receptor for C5a which acts as a negative modulator of C5a receptor (C5aR) activity. MDP amplified C5a-mediated phosphorylation of p38 MAPK. Treatment of RAW264.7 cells with an inhibitor of p38 attenuated the synergistic effects of C5aon MDP-primed cells on MIP-2, but not MCP-1, mRNA. In contrast, inhibition of AKT prevented C5a stimulation of MCP-1, but not MIP-2, mRNA, in MDP-primed cells. Taken together, these data demonstrated a synergistic interaction between C5a and NOD2 in the regulation of chemokine expression in macrophages, associated with a down-regulation of C5L2, a negative regulator of C5a receptor activity.

Share and Cite:

Tang, H. , Amara, U. , Tang, D. , Barnes, M. , McDonald, C. and Nagy, L. (2013) Synergistic interaction between C5a and NOD2 signaling in the regulation of chemokine expression in RAW 264.7 macrophages. Advances in Bioscience and Biotechnology, 4, 30-37. doi: 10.4236/abb.2013.48A3004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Raby, A.C., Holst, B., Davies, J., Colmont, C., Laumonnier, Y., Coles, B., Shah, S., Hall, J., Topley, N., Kohl, J., Morgan, B.P. and Labeta, M.O. (2011) TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2. European Journal of Immunology, 41, 2741-2752. doi:10.1002/eji.201041350
[2] Chen, N.J., Mirtsos, C., Suh, D., Lu, Y.C., Lin, W.J., McKerlie, C., Lee, T., Baribault, H., Tian, H. and Yeh, W.C. (2007) C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature, 446, 203-207. doi:10.1038/nature05559
[3] Bamberg, C.E., Mackay, C.R., Lee, H., Zahra, D., Jackson, J., Lim, Y.S., Whitfeld, P.L., Craig, S., Corsini, E., Lu, B., Gerard, C. and Gerard, N.P. (2010) The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. Journal of Biological Chemistry, 285, 7633-7644. doi:10.1074/jbc.M109.092106
[4] Cui, W., Simaan, M., Laporte, S., Lodge, R. and Cianflone, K. (2009) C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Molecular Immunology, 46, 3086-3098. doi:10.1016/j.molimm.2009.06.007
[5] Hajishengallis, G. and Lambris, J.D. (2010) Crosstalk pathways between Toll-like receptors and the complement system. Trends in Immunology, 31, 154-163. doi:10.1016/j.it.2010.01.002
[6] Akira, S., Uematsu, S. and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell, 124, 783-801. doi:10.1016/j.cell.2006.02.015
[7] Inohara, N. and Nunez, G. (2003) NODs: Intracellular proteins involved in inflammation and apoptosis. Nature Reviews Immunology, 3, 371-382. doi:10.1038/nri1086
[8] Ogura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R.H., Achkar, J.P., Brant, S.R., Bayless, T.M., Kirschner, B.S., Hanauer, S.B., Nunez, G. and Cho, J.H. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603-606. doi:10.1038/35079114
[9] Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C. A., Gassull, M., Binder, V., Finkel, Y., Cortot, A., Modigliani, R., Laurent-Puig, P., Gower-Rousseau, C., Macry, J., Colombel, J.F., Sahbatou, M. and Thomas, G. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599-603. doi:10.1038/35079107
[10] Strober, W., Murray, P.J., Kitani, A. and Watanabe, T. (2006) Signalling pathways and molecular interactions of NOD1 and NOD2. Nature Reviews Immunology, 6, 9-20. doi:10.1038/nri1747
[11] Girardin, S.E., Boneca, I.G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D.J. and Sansonetti, P.J. (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. Journal of Biological Chemistry, 278, 8869-8872. doi:10.1074/jbc.C200651200
[12] Pauleau, A.L. and Murray, P.J. (2003) Role of nod2 in the response of macrophages to toll-like receptor agonists. Molecular and Cellular Biology, 23, 7531-7539. doi:10.1128/MCB.23.21.7531-7539.2003
[13] Kobayashi, K.S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G. and Flavell, R.A. (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 307, 731-734. doi:10.1126/science.1104911
[14] McMullen, M.R., Pritchard, M.T., Wang, Q., Millward, C.A., Croniger, C.M. and Nagy, L.E. (2005) Early growth response-1 transcription factor is essential for ethanol-induced Fatty liver injury in mice. Gastroenterology, 128, 2066-2076. doi:10.1053/j.gastro.2005.02.065
[15] Fritz, J.H., Girardin, S.E., Fitting, C., Werts, C., Mengin-Lecreulx, D., Caroff, M., Cavaillon, J.M., Philpott, D.J. and Adib-Conquy, M. (2005) Synergistic stimulation of human monocytes and dendritic cells by Toll-like recaptor 4 and NOD1-and NOD2-activating agonists. European Journal of Immunology, 35, 2459-2470. doi:10.1002/eji.200526286
[16] Argast, G.M., Fausto, N. and Campbell, J.S. (2005) Inhibition of RIP2/RIck/CARDIAK activity by pyridinyl imidazole inhibitors of p38 MAPK. Molecular and Cellular Biology, 268, 129-140. doi:10.1007/s11010-005-3701-0
[17] Song, W.C. (2012) Crosstalk between complement and toll-like receptors. Toxicologic Pathology, 40, 174-182. doi:10.1177/0192623311428478
[18] Hawlisch, H., Belkaid, Y., Baelder, R., Hildeman, D., Gerard, C. and Kohl, J. (2005) C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity, 22, 415-426. doi:10.1016/j.immuni.2005.02.006
[19] Ward, P.A. (2010) The harmful role of c5a on innate immunity in sepsis. Journal of Innate Immunity, 2, 439-445. doi:10.1159/000317194
[20] Cain, S.A. and Monk, P.N. (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). Journal of Biological Chemistry, 277, 7165-7169. doi:10.1074/jbc.C100714200
[21] Okinaga, S., Slattery, D., Humbles, A., Zsengeller, Z., Morteau, O., Kinrade, M.B., Brodbeck, R.M., Krause, J.E., Choe, H.R., Gerard, N.P. and Gerard, C. (2003) C5L2, a nonsignaling C5A binding protein. Biochemistry, 42, 9406-9415. doi:10.1021/bi034489v
[22] Rittirsch, D., Flierl, M.A., Nadeau, B.A., Day, D.E., Huber-Lang, M., Mackay, C.R., Zetoune, F.S., Gerard, N.P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J.V. and Ward, P.A. (2008) Functional roles for C5a receptors in sepsis. Nature Medicine, 14, 551-557. doi:10.1038/nm1753
[23] Hao, J., Meng, L.Q., Xu, P.C., Chen, M. and Zhao, M.H. (2012) p38MAPK, ERK and PI3K signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated activation. PLoS One, 7, e38317. doi:10.1371/journal.pone.0038317
[24] Cao, Q., McIsaac, S.M. and Stadnyk, A.W. (2012) Human colonic epithelial cells detect and respond to C5a via apically expressed C5aR through the ERK pathway. American Journal of Physiology: Cell Physiology, 302, C1731-C1740. doi:10.1152/ajpcell.00213.2011
[25] Yan, C., Zhu, M., Staiger, J., Johnson, P.F. and Gao, H. (2012) C5a-regulated CCAAT/enhancer-binding proteins beta and delta are essential in Fcgamma receptor-mediated inflammatory cytokine and chemokine production in macrophages. Journal of Biological Chemistry, 287, 3217-3230. doi:10.1074/jbc.M111.280834
[26] Marks, D.J., Harbord, M.W., MacAllister, R., Rahman, F.Z., Young, J., Al-Lazikani, B., Lees, W., Novelli, M., Bloom, S. and Segal, A.W. (2006) Defective acute inflammation in Crohn’s disease: A clinical investigation. Lancet, 367, 668-678. doi:10.1016/S0140-6736(06)68265-2
[27] Bonen, D.K., Ogura, Y., Nicolae, D.L., Inohara, N., Saab, L., Tanabe, T., Chen, F.F., Foster, S. J., Duerr, R. H., Brant, S.R., Cho, J.H. and Nunez, G. (2003) Crohn’s disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology, 124, 140-146. doi:10.1053/gast.2003.50019
[28] Johswich, K., Martin, M., Bleich, A., Kracht, M., Dittrich-Breiholz, O., Gessner, J.E., Suerbaum, S., Wende, E., Rheinheimer, C. and Klos, A. (2009) Role of the C5a receptor (C5aR) in acute and chronic dextran sulfate-induced models of inflammatory bowel disease. Inflammatory Bowel Disease, 15, 1812.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.