Comparison of Positions of QTLs Conferring Resistance to Xanthomonas campestris pv. campestris in Brassica oleracea

Abstract

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is possibly the most important disease of Brassica worldwide. To compare chromosomal positions of Xcc resistance loci in Brassica oleracea between the present and published studies and to develop marker assisted selection (MAS) to resistance against Xcc race 1, we constructed a B. oleracea map, including pW, pX and BoCL markers that were closely linked to previously reported Xcc resistance QTLs. We also analyzed Xcc resistance QTLs by improving our previously reported map derived from the cross of a susceptible double-haploid line (GC P09) with a resistant double-haploid line (Reiho P01). In the nine linkage groups obtained (C1-C9), the major QTL, XccBo(Reiho)2, was derived from Reiho with a maximum LOD score (7.7) in C8. The QTL (LOD 4.4) located in C9, XccBo(GC)1 was derived from the susceptible GC. The other QTL (LOD 4.4), XccBo(Reiho)1, was found in C5. Based on common markers, it was possible to compare our finding Xcc resistance QTLs with the B. oleraceaXcc loci reported by previous authors; XccBo(Reiho)1 and XccBo(GC)1 may be identical to the Xcc resistance QTLs reported previously or a different member contained in the same resistance gene cluster. Our map includes public SSR markers linked to Xcc resistance genes that will promote pyramiding Xcc resistance genes in B. oleracea. The present study will also contribute to a better understanding of genetic control of Xcc resistance.

Share and Cite:

N. Tonu, M. Doullah, M. Shimizu, M. Karim, T. Kawanabe, R. Fujimoto and K. Okazaki, "Comparison of Positions of QTLs Conferring Resistance to Xanthomonas campestris pv. campestris in Brassica oleracea," American Journal of Plant Sciences, Vol. 4 No. 8A, 2013, pp. 11-20. doi: 10.4236/ajps.2013.48A002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. H. Williams, “Black Rot: A Counting Threat to World Crucifers,” Plant Disease, Vol. 64, 1980, pp. 736-742. doi:10.1094/PD-64-736
[2] A. M. Shelton and J. E. Hunter, “Evaluation of the Potential of the Flea Bettle Phyllotreta cruciferae to Transmit Xanthomonas campestris pv. campestris, Casual Agent of Black Rot of Crucifers,” Canadian Journal of Plant Pathology, Vol. 7, 1985, pp. 308-310. doi:10.1080/07060668509501696
[3] A. A. Cook, J. C. Walker and R. H. Larson, “Studies on the Disease Cycle of Black Rot of Crucifers,” Phytopathology, Vol. 42, 1952, pp. 162-167.
[4] N. W. Schaad and J. C. Dianese, “Cruciferous Weeds as Sources of Inoculum of Xanthomonas campestris in Black Rot of Crucifers,” Phytopathology, Vol. 71, 1981, pp. 1215-1220. doi:10.1094/Phyto-71-1215
[5] S. Kamoun, H. V. Kamdar, E. Tola and C. I. Kado, “Incompatible Interactions between Crucifers and Xanthomonas campestris Involve a Vascular Hypersensitive Response: Role of the Hrpx Locus,” Molecular Plant-Microbe Interactions, Vol. 5, No. 1, 1992, pp. 22-23. doi:10.1094/MPMI-5-022
[6] A. Ignatov, Y. Kuginuki and K. Hida, “Race-Specific Reaction of Resistance to Black Rot in Brassica Oleracea,” European Journal of Plant Pathology, Vol. 104, No. 8, 1998, pp. 821-827. doi:10.1023/A:1008642829156
[7] J. G. Vicente, J. Conway,S. J. Roberts and J. D. Taylor, “Identification and Origin of Xanthomonas campestris pv. campestris Races and Related Pathovers,” Phytopathology, Vol. 91, No. 5, 2001, pp. 492-499. doi:10.1094/PHYTO.2001.91.5.492
[8] J. D. Taylor, J. Conway, S. J. Roberts, D. Astley and J. G. Vicente, “Sources and Origin of Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes,” Phytopathology, Vol. 92, No. 1, 2002, pp. 105-111. doi:10.1094/PHYTO.2002.92.1.105
[9] E. Fargier and C. Manceau, “Pathogenicity Assays Restrict the Species Xanthomonas campestris into Three Pathovars and Reveal Nine Races Within Xanthomonas campestris pv. campestris,” Plant Pathology, Vol. 56, No. 5, 2007, pp. 805-818. doi:10.1111/j.1365-3059.2007.01648.x
[10] P. Soengas, P. Hand, J. G. Vicente, J. Pole and D. A. C. Pink, “Identification of Quantitative Trait Loci for Resistance to Xanthomonas campestris pv. Campestris in Brassica Rapa,” Theoritical applied Genetics. Vol. 114, No. 4, 2007, pp. 637-645.
[11] D. C. Bain, “Reaction of Brassica Seedlings to Black Rot,” Phytopathology, Vol. 42, No. 6, 1952, pp. 497-500.
[12] R. Sharma, V. Swarup and S. S.Chatterjee, “Resistance to Black Rot Disease (Xanthomonas campestris (Pam.) Dowson, in Cauliflower,” Scientia Horticulturae, Vol. 7, No. 1, 1977, pp. 1-7. doi:10.1016/0304-4238(77)90037-1
[13] M. E. Ferreira, J. S. Dias, A. Mengistu and P. W. Williams, “Screening of Portuguese Cole Landraces (Brassica oleracea L.) with Leptosphaeri amaculans and Xanthomonas campestris pv. Campestris,” Euphytica, Vol. 65, No. 3, 1993, pp. 219-228. doi:10.1007/BF00023086
[14] A. L. Westman, S. Kresovich and M. H. Dickson, “Regional Variation in Brassica nigra and Other Weedy Crucifers for Disease Reaction to Alternaria brassicicola and Xanthomonas campestris pv. campestris,” Euphytica, Vol. 106, No. 3, 1999, pp. 253-259. doi:10.1023/A:1003544025146
[15] J. G. Vicente, J. D. Taylor, A. G. Sharp, I. A. P. Parkin, D. J. Lydiate and G. J. King, “Inheritance of Race-Specific Resistance to Xanthomonas campestris pv. campestris in Brassica Genomes,” Phytopathology, Vol. 92, No. 10, 2002, pp. 1134-1141. doi:10.1094/PHYTO.2002.92.10.1134
[16] P. H. Williams, T. Staub and J. C. Sutton, “Inheritance of Resistance in Cabbage to Black Rot,” Phytopathology, Vol. 62, 1972, pp. 247-249. doi:10.1094/Phyto-62-247
[17] L. E. A. Camargo, P. H. Williams and T. C. Osborn, “Mapping of Quantitative Trait Loci Controlling Resistance of Brassica oleracea to Xanthomonas campestris pv. campestris in the Field and Greenhouse,” Phytopathology, Vol. 85, No. 2, 1995, pp. 1296-1300. doi:10.1094/Phyto-85-1296
[18] Y. Kifuji, H. Hanzawa, Y. Terasawa, Ashutosh and T. Nishio, “QTL Analysis of Black Rot Resistance in Cabbage Using Newly Developed EST-SNP Markers,” Euphytica, Vol. 190, No. 2, 2013, pp. 289-295. doi:10.1007/s10681-012-0847-1
[19] M. A. U. Doullah, G. M. Mohsin, K. Ishikawa, H. Hori and K. Okazaki, “Construction of a Linkage Map and QTL Analysis for Black Rot Resistance in Brassica oleracea L,” International Journal of Natural Sciences, Vol. 1, No. 1, 2011, pp. 1-6. doi:10.3329/ijns.v1i1.8591
[20] K. Ohata, K. Seruzawa, K. Azegami and A. Shirata, “Possibility of Seed Transmission of Xanthomonas campestris pv. vitians, the Pathogen of Bacterial Spot of Lettuce,” Bulletin of the National Institute of Agricultural Sciences Series C. Plant Pathology and Entomology, Vol. 36, 1982, pp. 81-88.
[21] X. Cheng, J. Xu, S. Xia, J. Gu, Y. Yang, J. Fu, X. Qian, S. Zhang, J. Wu and K. Liu, “Development and Genetic Mapping of Microsattelite Markers from Genome Survey Sequences in Brassica napus,” Vol. 118, No. 6, 2009, pp. 1121-1131.
[22] W. Wang, S. Huang, Y. Liu, Z. Fang,L. Yang, W. Hua, S. Yuan, S. Liu, J. Sun, M. Zhuang, Y. Zhang and A. Zeng, “Construction and Analysis of a High-Density Genetic Linkage Map in Cabbage (Brassica oleracea L. var. Capitata),” BMC Genomics, Vol. 13, 2012, p. 523. doi:10.1186/1471-2164-13-523
[23] H. Li, X. Chen, Y. Yang, J. Xu, J. Gu, J. Fu, X. Qian, S. Zhang, J. Wu and K. Liu, “Development and Genetic Mapping of Microsatellite Markers from Whole Genome Shotgun Sequences in Brassica Oleracea,” Molecular Breeding, Vol. 28, No. 4, 2011, pp. 585-596. doi:10.1007/s11032-010-9509-y
[24] J. Piquemal, E. Cinquin, F. Couton,C. Rondeau, E. Seignoret, I. Doucet, D. Perret, M. J. Villeger, P. Vincourt and P. Blanchard, “Construction of an Oilseed Rape (Brassica napus L.) Genetic Map with SSR Markers,” Theoretical and Applied Genetics, Vol. 111, No. 8, 2005, pp. 1514-1523. doi:10.1007/s00122-005-0080-6
[25] M. Radoev, H. C. Becker and W. Ecke, “Genetic Analysis of Heterosis for Yield and Yield Components in Rapeseed (Brassica napus L.) by Quantitative Trait Locus Mapping,” Genetics, Vol. 179, No. 3, 2008, pp. 1547-1558. doi:10.1534/genetics.108.089680
[26] K. Suwabe, H. Tsukazaki, H. Iketani, K. Hatakeyama, M. Kondo, M. Fujimura, T. Nunome, H. Fukuoka, M. Hirai and S. Matsumoto, “Simple Sequence Repeat-Based Comparative Genomics Between Brassica rapa and Arabidopsis thaliana: The Genetic Origin of Club Root Resistance,” Genetics, Vol. 170, No. 1, 2006, pp. 309-319. doi:10.1534/genetics.104.038968
[27] F. L. Iniguez-Luy, L. Lukens, M. W. Farnham, R. M. Amasino and T. C. Osborn, “Development of Public Im-mortal Mapping Populations, Molecular Markers and Linkage Maps for Rapid Cycling Brassica rapa and B. oleracea,” Theoretical and Applied Genetics, Vol. 120, No. 1, 2009, pp. 31-43. doi:10.1007/s00122-009-1157-4
[28] T. Nagaoka, M. A. U. Doullah, S. Matsumoto, S. Kawasaki, T. Ishikawa, H. Hori and K. Okazaki, “Identification of QTLs That Control Club Root Resistance in Brassica oleracea and Comparative Analysis of Club Root Resistance Genes between B. rapa and B. oleracea,” Theoritical and Applied Genetics, Vol. 120, No. 7, 2010, pp. 1335-1346.
[29] J. A. Udall, P. A. Quijada and T. C. Osborn, “Detection of Chromosomal Rearrangements Derived from Homologous Recombination in Four Mapping Populations of Brassica napus L.,” Genetics, Vol. 169, No. 2, 2005, pp. 967-979. doi:10.1534/genetics.104.033209
[30] S. Kikuchi, S. Taketa, M. Ichii and S. Kawasaki, “Efficient Fine Mapping of the Naked Caryopsis Gene (Nud) by HEGS (High Efficiency Genome Scanning)/AFLP in Barley,” Theoretical and Applied Genetics, Vol. 108, No. 1, 2004, pp. 73-78. doi:10.1007/s00122-003-1413-y
[31] H. Iwata and S. Ninomiya, “Antmap: Constructing Genetic Linkage Maps Using an Ant Colony Optimization,” Algorithm, Vol. 56, No. 4, 2006, pp. 371-377.
[32] C. J. Basten, B. S. Weir and Z. B. Zeng, “QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping,” North Caroline State University, Raleigh, 2005.
[33] L. E. A. Camargo, L. Savides, G. Jung, J. Nienhuis and T. C. Osborn, “Location of the Self-Incompatibility Locus in an RFLP and RAPD Map of Brassica oleracea,” Journal of Heredity, Vol. 88, No. 1, 1997, pp. 57-60. doi:10.1093/oxfordjournals.jhered.a023057
[34] J. Wang, D. J. Lydiate, I. A. P. Parkin, C. Falentin, R. Delourme, P. W. C.Carion and G. J. King, “Integration of Linkage Maps for the Amphidiploid Brassica napus and Comparative Mapping With Arabidopsis and Brassica rapa,” BMC Genomics, Vol. 12, 2011, p. 101. doi:10.1186/1471-2164-12-101
[35] B. S. Landry, N. Hubert, R. Crete, M. Chang, S. E. Lincoln and T. Ethos, “A Genetic Map of Brassica oleracea Based on RFLP Markers Detected with Expressed DNA Sequences and Mapping of Resistance Genes to Race 2 of Plasmodiophora brassicae (Woronin),” Genome, Vol. 35, No. 3, 1992, pp. 409-419. doi:10.1139/g92-061
[36] A. W. Schechert, H. G. Welz and H. H. Geiger, “QTL for Resistance to Setosphaeria turcica in Tropical African Maize,” Crop Science, Vol. 39, No. 2, 1999, pp. 514-523. doi:10.2135/cropsci1999.0011183X003900020036x
[37] L. Lukens, F. Zou, D. Lydiate, I. Parkin and T. Osborn, “Comparison of a Brassica oleracea genetic Map with the Genome of Arabidopsis thaliana,” Genetics, Vol. 164, No. 1, 2003, pp. 359-372.
[38] I. A. P. Parkin, S. M. Gulden, A. G. Sharpe, L. Lukens and M. Trick, “Segmental Structure of the Brassica napus Genome Based on Comparative Analysis with Arabidopsis Thaliana,” Genetics, Vol. 171, No. 2, 2005, pp. 765-781. doi:10.1534/genetics.105.042093
[39] J. D. Carlier , C. S. Alabaca, N. H. Sousa, P. S. Coelho, A. A. Monteiro, A. H. Paterson and J. M. Leitao, “Physical Mapping in a Triplicated Genome: Mapping the Downy Mildew Resistance Locus Pp523 in Brassica oleracea L.,” G3 (Bethesda), Vol. 1, No. 7, 2011, pp. 593-601.
[40] E. B. Holub, “Organization of Resistance Genes in Arabidopsis,” In: I. R. Crute, E. B. Holub and J. J. Burdon, Eds., The Gene-for-Gene Relationship in Plant-Parasite Interactions, CAB Int. ,Wallingford, 1997, pp. 5-26.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.