Share This Article:

Beneficial Applications and Deleterious Effects of Near-Infrared from Biological and Medical Perspectives

Full-Text HTML XML Download Download as PDF (Size:209KB) PP. 31-39
DOI: 10.4236/opj.2013.34A006    5,727 Downloads   8,442 Views   Citations


Over half of solar energy consists of near-infrared and a wide range of preventative mechanisms have been evolutionarily maintained in organisms to protect against effects of near-infrared. However, the biological effects of near-infrared have not been investigated in detail. Despite the essential requirement of a water-filter to imitate solar near-infrared filtered by atmospheric water, previous studies used near-infrared resources without a water-filter or a cooling system. With these methods, near-infrared energy is primarily absorbed in the superficial tissues, thus these approaches are unable to sufficiently evaluate the biological effects of solar near-infrared that reaches human tissue. We have elucidated that near-infrared (1100 - 1800 nm together with a water-filter that excludes wavelengths 1400 - 1500 nm) non-thermally affects the skin into the deeper tissues. The biological effects of near-infrared have both beneficial applications and deleterious effects. Near-infrared induces collagen and elastin stimulation, which achieves skin rejuvenation and skin tightening, and induces long-lasting vasodilation that may prevent vasospasm and be beneficial for ischemic disorders. Near-infrared also relaxes and weakens dystonic and hypertrophic muscles to reduce wrinkles and myalgia. Nearinfrared is an essential tool in cancer detection and imaging, and induces drastic non-thermal DNA damage of mitotic cells, which may be beneficial for treating cancer. Activation of stem cells by near-infrared may be useful in regenerative medicine. However, continuous near-infrared exposure induces photoaging and potentially photocarcinogenesis. Humans have protective mechanisms against near-infrared on multiple levels, including perspiration, blisters, vasodilation, hair, skin, adipose tissue, and cotton or wool clothing. Further protection should be considered, as biological effects of near-infrared are significant, and standard sunscreens and glasses cannot sufficiently block near-infrared. This paper reviews the effects of near-infrared and introduces the new findings of near-infrared from a biological point of view.

Cite this paper

Y. Tanaka and L. Gale, "Beneficial Applications and Deleterious Effects of Near-Infrared from Biological and Medical Perspectives," Optics and Photonics Journal, Vol. 3 No. 4A, 2013, pp. 31-39. doi: 10.4236/opj.2013.34A006.


[1] Y. Tanaka, “Impact of Near-Infrared in Dermatology, Review,” World Journal of Dermatology, Vol. 1, No. 3, 2012, pp. 30-37.
[2] Y. Tanaka, Y. Tunemi, M. Kawashima and H. Nishida, “The Impact of Near-Infrared in Plastic Surgery,” Plastic Surgery: An International Journal, 2013, Article ID 973073. doi:10.5171/2013.973073
[3] Y. Tanaka and M. Kawashima, “The Biological Effects of Near-Infrared,” Aesthetic Dermatology, Vol. 22, 2012, pp. 100-109 (in Japanese).
[4] Y. Tanaka and K. Matsuo, “Non-Thermal Effects of Near-Infrared Irradiation on Melanoma,” In: Y. Tanaka, Ed., Breakthroughs in Melanoma Research, InTech, Croatia, 2011, pp. 597-628.
[5] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Near-Infrared Irradiation Non-Thermally Induces Long-Lasting Vasodilation by Causing Apoptosis of Vascular Smooth Muscle Cells,” ePlasty, Vol. 11, 2011, p. e22.
[6] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Long-Lasting Muscle Thinning Induced by Infrared Irradiation Specialized with Wavelength and Contact Cooling: A Preliminary Report,” ePlasty, Vol. 10, 2010, p. e40.
[7] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Long-Lasting Relaxation of Corrugator Supercilii Muscle Contraction Induced by Near Infrared Irradiation,” ePlasty, Vol. 11, 2011, p. e6.
[8] R. R. Anderson and J. A. Parrish, “The Optics of Human Skin,” Journal of Investigative Dermatology, Vol. 77, No. 1, 1981, pp. 13-19. doi:10.1111/1523-1747.ep12479191
[9] D. M. Gates, “Spectral Distribution of Solar Radiation at the Earth’s Surface,” Science, Vol. 151, No. 3710, 1966, pp. 523-529. doi:10.1126/science.151.3710.523
[10] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Long-Term Evaluation of Collagen and Elastin Following Infrared (1100 to 1800 nm) Irradiation,” Journal of Drugs in Dermatology, Vol. 8, No. 8, 2009, pp. 708-712.
[11] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Near-Infrared Irradiation Non-Thermally Affects Subcutaneous Adipocytes and Bones,” ePlasty, Vol. 11, 2011, p. e12.
[12] K. Danno, N. Mori, K. Toda, T. Kobayashi and A. Utani, “Near-Infrared Irradiation Stimulates Cutaneous Wound Repair: Laboratory Experiments on Possible Mechanisms,” Photodermatology, Photoimmunology & Photomedicine, Vol. 17, No. 6, 2001, pp. 261-265. doi:10.1034/j.1600-0781.2001.170603.x
[13] L. R. Horwitz, T. J. Burke and D. Carnegie, “Augmentation of Wound Healing Using Monochromatic Infrared Energy. Exploration of a New Technology for Wound Management,” Advances in Skin & Wound Care, Vol. 12, No. 1, 1999, pp. 35-40.
[14] J. M. Schramm, D. Warner, R. A. Hardesty and K. C. Oberg, “A Unique Combination of Infrared and Microwave Radiation Accelerates Wound Healing,” Plastic and Reconstructive Surgery, Vol. 111, No. 1, 2003, pp. 258-266. doi:10.1097/00006534-200301000-00044
[15] W. Baumler, C. Abels, S. Karrer, T. Weiss, H. Messmann, M. Landthaler and R. M. Szeimies, “Photo-Oxidative Killing of Human Colonic Cancer Cells Using Indocyanine Green and Infrared Light,” British Journal of Cancer, Vol. 80, No. 3-4, 1999, pp. 360-363. doi:10.1038/sj.bjc.6690363
[16] C. Dees, J. Harkins, M. G. Petersen, W. G. Fisher and E. A. Wachter, “Treatment of Murine Cutaneous Melanoma with Near Infrared Light,” Photochemistry and Photobiology, Vol. 75, No. 3, 2002, pp. 296-301. doi:10.1562/0031-8655(2002)075<0296:TOMCMW>2.0.CO;2
[17] D. K. Kelleher, O. Thews, J. Rzeznik, A. Scherz, Y. Salomon and P. Vaupel, “Hot Topic. Water-Filtered Infrared —A Radiation: A Novel Technique for Localized Hyperthermia in Combination with Bacteriochlorophyll-Based Photodynamic Therapy,” International Journal of Hyperthermia, Vol. 15, No. 6, 1999, pp. 467-474. doi:10.1080/026567399285468
[18] A. Orenstein, G. Kostenich, Y. Kopolovic, T. Babushkina and Z. Malik, “Enhancement of ALA-PDT Damage by IR-Induced Hyperthermia on a Colon Carcinoma Model,” Photochemistry and Photobiology, Vol. 69, No. 6, 1999, pp. 703-707.
[19] Y. Tanaka, K. Matsuo, S. Yuzuriha and H. Shinohara, “Differential Long-Term Stimulation of Type I versus Type III Collagen after Infrared Irradiation,” Dermatologic Surgery, Vol. 35, No. 7, 2009, pp. 1099-1104. doi:10.1111/j.1524-4725.2009.01194.x
[20] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Long-Term Histological Comparison between Near-Infrared Irradiated Skin and Scar Tissues,” Clinical, Cosmetic and Investigational Dermatology, Vol. 3, No. 1, 2010, pp. 143-149.
[21] Y. Tanaka, K. Matsuo and S. Yuzuriha, “Objective Assessment of Skin Rejuvenation Using Near-Infrared 1064nm Neodymium: YAG Laser in Asians,” Clinical, Cosmetic and Investigational Dermatology, Vol. 4, No. 1, 2011, pp. 123-130.
[22] Y. Tanaka, K. Matsuo, S. Yuzuriha, H. Yan and J. Nakayama, “Non-Thermal Cytocidal Effect of Infrared Irradiation on Cultured Cancer Cells Using Specialized Device,” Cancer Science, Vol. 101, No. 6, 2010, pp. 1396-1402. doi:10.1111/j.1349-7006.2010.01548.x
[23] Y. Tanaka, N. Tatewaki, H. Nishida, T. Eitsuka, N. Ikekawa and J. Nakayama, “Non-Thermal DNA Damage of Cancer Cells Using Near-Infrared Irradiation,” Cancer Science, Vol. 103, No. 8, 2012, pp. 1467-1473. doi:10.1111/j.1349-7006.2012.02310.x
[24] S. M. Schieke, P. Schroeder and J. Krutmann, “Review Article. Cutaneous Effects of Infrared Radiation: From Clinical Observations to Molecular Response Mechanisms,” Photodermatology, Photoimmunology & Photomedicine, Vol. 19. No. 5, 2003, pp. 228-234. doi:10.1034/j.1600-0781.2003.00054.x
[25] P. Schroeder, J. Lademann, M. E. Darvin, H. Stege, C. Marks, S. Bruhnke and J. Krutmann, “Infrared Radiation-Induced Matrix Metalloproteinase in Human Skin: Implications for Protection,” Journal of Investigative Dermatology, Vol. 128, No. 10, 2008, pp. 2491-2497. doi:10.1038/jid.2008.116
[26] M. E. Darvin, S. Haag, M. Meinke, L. Zastrow, W. Sterry and J. Lademann, “Radical Production by Infrared A Irradiation in Human Tissue,” Skin Pharmacology and Physiology, Vol. 23, No. 1, 2010, pp. 40-46. doi:10.1159/000257262
[27] M. C. Meinke, S. F. Haag, S. Schanzer, N. Groth, I. Gersonde and J. Lademann, “Radical Protection by Sunscreens in the Infrared Spectral Range,” Photochemistry and Photobiology, Vol. 87, No. 2, 2011, pp. 452-456. doi:10.1111/j.1751-1097.2010.00838.x
[28] J. A. Pujol and M. Lecha, “Photoprotection in the Infrared Radiation Range,” Photodermatology, Photoimmunology & Photomedicine, Vol. 9, 1993, pp. 275-278.
[29] I. E. Kochevar, M. A. Pathak and J. A. Parrish, “Photophysics, Photochemistry and Photobiology,” In: I. M. Freedberg, A. Z. Eisen, K. Wolff, K. F. Austen, L. A. Goldsmith and S. I. Katz, Eds., Fitzpatrick’s Dermatology in General Medicine, McGraw-Hill, New York, 1999, pp. 220-229.
[30] S. Frank, L. Oliver, C. Lebreton-De Coster, C. Moreau, M. T. Lecabellec, L. Michel, F. M. Vallette, L. Dubertret and B. Coulomb, “Infrared Radiation Affects the Mitochondrial Pathway of Apoptosis in Human Fibroblasts,” Journal of Investigative Dermatology, Vol. 123, No. 5, 2004, pp. 823-831. doi:10.1111/j.0022-202X.2004.23472.x
[31] H. H. Kim, M. J. Lee, S. R. Lee, K. H. Kim, K. H. Cho, H. C. Eun and J. H. Chung, “Augmentation of UV-Induced Skin Wrinkling by Infrared Irradiation in Hairless Mice,” Mechanisms of Ageing and Development, Vol. 126, No. 11, 2005, pp. 1170-1177. doi:10.1016/j.mad.2005.06.003
[32] L. H. Kligman, “Intensification of Ultraviolet-Induced Dermal Damage by Infrared Radiation,” Archives of Dermatological Research, Vol. 272, No. 3-4, 1982, pp. 229-238. doi:10.1007/BF00509050
[33] S. A. Davenport, D. A. Gollnick, M. Levernier and G. J. R. Spooner, “Method and System for Treatment of Post-Partum Abdominal Skin Redundancy or Laxity,” US Patent No. 20060052847, 2006.
[34] N. A. Nevskaya and Y. N. Chirgadze, “Infrared Spectra and Resonance Interactions of Amide-I and II Vibrations of Alpha-Helix,” Biopolymers, Vol. 15, No. 4, 1976, pp. 637-648. doi:10.1002/bip.1976.360150404
[35] L. G. Weyer, “Near-Infrared Spectroscopy of Organic Substances,” Applied Spectroscopy Reviews, Vol. 21, No. 1-2, 1985, pp. 1-43. doi:10.1080/05704928508060427
[36] M. Prokocimer, M. Davidovich, M. Nissim-Rafinia, N. Wiesel-Motiuk, D. Z. Bar, R. Barkan, E. Meshorer and Y. Gruenbaum, “Nuclear Lamins: Key Regulators of Nuclear Structure and Activities,” Journal of Cellular and Molecular Medicine, Vol. 13, No. 6, 2009, pp. 1059-1085. doi:10.1111/j.1582-4934.2008.00676.x
[37] N. Stuurman, S. Heins and U. Aebi, “Nuclear Lamins: Their Structure, Assembly, and Interactions,” Journal of Structural Biology, Vol. 122, No. 1-2, 1998, pp. 42-66. doi:10.1006/jsbi.1998.3987
[38] M. Zaremba-Czogalla, M. Dubinska-Magiera and R. Rzepecki, “Laminopathies: The Molecular Background of the Disease and the Prospects for Its Treatment,” Cellular & Molecular Biology Letters, Vol. 16, No. 1, 2011, pp. 114-148. doi:10.2478/s11658-010-0038-9
[39] T. Sullivan, D. Escalante-Alcalde, H. Bhatt, M. Anver, N. Bhat, K. Nagashima, C. L. Stewart and B. Burke, “Loss of A-Type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy,” The Journal of Cell Biology, Vol. 147, No. 5, 1999, pp. 913-920. doi:10.1083/jcb.147.5.913
[40] J. W. Newport, K. L. Wilson and W. G. Dunphy, “A Lamin-Independent Pathway for Nuclear Envelope Assembly,” The Journal of Cell Biology, Vol. 111, No. 6, 1990, pp. 2247-2259. doi:10.1083/jcb.111.6.2247
[41] J. Liu, K. K. Lee, M. Segura-Totten, K. L. Wilson and Y. Gruenbaum, “MAN1 and Emerin Have Overlapping Function(s) Essential for Chromosome Segregation and Cell Division in Caenorhabditis Elegans,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 8, 2003, pp. 4598-4603.
[42] L. Gerace and G. Blobel, “The Nuclear Envelope Lamina Is Reversibly Depolymerised during Mitosis,” Cell, Vol. 19, No. 1, 1980, pp. 277-287. doi:10.1016/0092-8674(80)90409-2
[43] L. Yang, T. Guan and L. Gerace, “Integral Membrane Proteins of the Nuclear Envelope Are Dispersed throughout the Endoplasmic Reticulum during Mitosis,” The Journal of Cell Biology, Vol. 37, No. 6, 1997, 1199-1210.
[44] D. J. Goldberg, M. Hussain, A. Fazeli and A. L. Berlin, “Treatment of Skin Laxity of the Lower Face and Neck in Older Individuals with a Broad Spectrum Infrared Light Device,” Journal of Cosmetic and Laser Therapy, Vol. 9, No. 1, 2007, pp. 35-40. doi:10.1080/14764170601186107
[45] B. Zelickson, V. Ross, D. Kist, J. Counters, S. Davenport and G. Spooner, “Ultrastructural Effects of an Infrared Handpiece on Forehead and Abdominal Skin,” Dermatologic Surgery, Vol. 32, No. 7, 2006, pp. 897-901. doi:10.1111/j.1524-4725.2006.32193.x
[46] K. Danno, T. Horio and S. Imamura, “Infrared Radiation Suppresses Ultraviolet B-Induced Sunburn-Cell Formation,” Archives of Dermatological Research, Vol. 284, No. 2, 1992, pp. 92-94. doi:10.1007/BF00373376
[47] S. Menezes, B. Coulomb, C. Lebreton and L. Dubertret, “Non-Coherent near Infrared Radiation Protects Normal Human Dermal Fibroblasts from Solar Ultraviolet Toxicity,” Journal of Investigative Dermatology, Vol. 111, 1998, pp. 629-633. doi:10.1046/j.1523-1747.1998.00338.x
[48] Y. Ceylan, S. Hizmetli and Y. Siling, “The Effects of Infrared Laser and Medical Treatments on Pain and Serotonin Degradation Products in Patients with Myofascial Pain Syndrome: A Controlled Trial,” Rheumatology International, Vol. 24, No. 5, 2003, pp. 260-263. doi:10.1007/s00296-003-0348-6
[49] C. Webb, M. Dyson and W. H. Lewis, “Stimulatory Effect of 660 nm Low Level Laser Energy on Hypertrophic Scar-Derived Fibroblasts: Possible Mechanisms for Increase in Cell Counts,” Lasers in Surgery and Medicine, Vol. 22, No. 5, 1998, pp. 294-301. doi:10.1002/(SICI)1096-9101(1998)22:5<294::AID-LSM6>3.0.CO;2-K
[50] T. Karu, “Invited Review. Primary and Secondary Mechanisms of Action of Visible to Near-IR Radiation on Cells,” Journal of Photochemistry and Photobiology B: Biology, Vol. 49, No. 1, 1999, pp. 1-17. doi:10.1016/S1011-1344(98)00219-X
[51] S. Passarella, E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I. M. Catalano and A. Cingolani, “Increase of Proton Electrochemical Potential and ATP Synthesis in Rat Liver Mitochondria Irradiated in Vitro by Helium-Neon Laser,” FEBS Letters, Vol. 175, No. 1, 1984, pp. 95-99. doi:10.1016/0014-5793(84)80577-3
[52] W. Yu, J. O. Naim, M. McGowan, K. Ippolito and R. J. Lanzafame, “Photomodulation of Oxidative Metabolism and Electron Chain Enzymes in Rat Liver Mitochondria,” Photochemistry and Photobiology, Vol. 66, No. 6, 1997, pp. 866-871. doi:10.1111/j.1751-1097.1997.tb03239.x
[53] L. Wilden and R. Karthein, “Import of Radiation Phenomena of Electrons and Therapeutic Low-Level Laser in Regard to the Mitochondrial Energy Transfer,” Journal of Clinical Laser Medicine & Surgery, Vol. 16, No. 3, 1998, pp. 159-165.
[54] M. J. Conlan, J. W. Rapley and C. M. Cobb, “Biostimulation of Wound Healing by Low-Energy Laser Irradiation,” Journal of Clinical Periodontology, Vol. 23, No. 5, 1996, pp. 492-496. doi:10.1111/j.1600-051X.1996.tb00580.x
[55] T. Yaakobi, L. Maltz and U. Oron, “Promotion of Bone Repair in the Cortical Bone of the Tibia in Rats by Low Energy Laser (He-Ne) Irradiation,” Calcified Tissue International, Vol. 59, No. 4, 1996, pp. 297-300. doi:10.1007/s002239900126
[56] E. Assia, M. Rosner, M. Belkin, A. Solomon and M. Schwartz, “Temporal Parameters of Low Energy Laser Irradiation for Optimal Delay of Post-Traumatic Degeneration of Rat Optic Nerve,” Brain Research, Vol. 476, No. 2, 1989, pp. 205-212. doi:10.1016/0006-8993(89)91240-7
[57] A. Bibikova and U. Oron, “Attenuation of the Process of Muscle Regeneration in the Toad Gastrocnemius Muscle by Low Energy Laser Irradiation,” Lasers in Surgery and Medicine, Vol. 14, No. 4, 1994, pp. 355-361. doi:10.1002/lsm.1900140408
[58] U. Oron, “Photoengineering of Tissue Repair in Skeletal and Cardiac Muscles,” Photomedicine and Laser Surgery, Vol. 24, No. 2, 2006, pp. 111-120. doi:10.1089/pho.2006.24.111
[59] T. Karu, L. Pyatibrat and G. Kalendo, “Irradiation with He-Ne Laser Can Influence the Cytotoxic Response of HeLa Cells to Ionizing Radiation,” International Journal of Radiation Biology, Vol. 65, No. 6, 1994, pp. 691-697. doi:10.1080/09553009414550811
[60] J. Tafur and P. J. Mills, “Low-Intensity Light Therapy: Exploring the Role of Redox Mechanisms,” Photomedicine and Laser Surgery, Vol. 26, No. 4, 2008, pp. 321-326. doi:10.1089/pho.2007.2184
[61] T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, “ Photodynamic Therapy,” Journal of the National Cancer Institute, Vol. 90, No. 12, 1998, pp. 889-905. doi:10.1093/jnci/90.12.889
[62] J. Lobel, I. J. MacDonald, M. J. Ciesielski, T. Barone, W. R. Potter, J. Pollina, R. J. Plunkett, R. A. Fenstermaker and T. J. Dougherty, “2-(1-Hexyloxyethyl)-2-devinylpyropheophorbide-a (HPPH) in a Nude Rat Glioma Model: Implications for Photodynamic Therapy,” Lasers in Surgery and Medicine, Vol. 29, No. 5, 2001, pp. 397-405. doi:10.1002/lsm.10001
[63] A. Busetti, M. Soncin, G. Jori, M. E. Kenney and M. A. Rodgers, “Treatment of Malignant Melanoma by High-Peak-Power 1064 nm Irradiation Followed by Photodynamic Therapy,” Photochemistry and Photobiology, Vol. 68, No. 3, 1998, pp. 377-381. doi:10.1111/j.1751-1097.1998.tb09695.x
[64] L. A. Santana-Blank, E. Rodriguez-Santana, F. Vargas, H. Reyes, P. Fernandez-Andrade, S. Rukos and K. E. Santana-Rodriguez, “Phase I Trial of an Infrared Pulsed Laser Device in Patients with Advanced Neoplasias,” Clinical Cancer Research, Vol. 8, No. 10, 2002, pp. 3082-3091.
[65] U. K. Tirlapur and K. Konig, “Femtosecond Near-Infrared Laser Pulse Induced Strand Breaks in Mammalian Cells,” Cell and Molecular Biology, Vol. 47, 2001, pp. 131-134.
[66] C. Dees, J. Harkins, M. G. Petersen, W. G. Fisher and E. A. Wachter, “Treatment of Murine Cutaneous Melanoma with near Infrared Light,” Photochemistry and Photobiology, Vol. 75, No. 3, 2002, pp.296-301. doi:10.1562/0031-8655(2002)075<0296:TOMCMW>2.0.CO;2
[67] J. Kujawa, I. B. Zavodnik, A. Lapshina, M. Labieniec and M. Bryszewska, “Cell Survival, DNA, and Protein Damage in B14 Cells under Low-Intensity Near-Infrared (810nm) Laser Irradiation,” Photomedicine and Laser Surgery, Vol. 22, No. 6, 2004, pp. 504-508. doi:10.1089/pho.2004.22.504
[68] M. S. Kim, Y. K. Kim, K. H. Cho and J. H. Chung, “Infrared Exposure Induces an Angiogenic Switch in Human Skin that Is Partially Mediated by Heat,” British Journal of Dermatology, Vol. 155, No. 6, 2006, pp. 1131-1138. doi:10.1111/j.1365-2133.2006.07510.x
[69] G. R. Findlayson, W. M. Sams Jr. and J. G. Smith, “Erythema Ab Igne. A Histopathological Study,” The Journal of Investigative Dermatology, Vol. 46, 1966, pp. 104-107.
[70] E. H. Page and N. H. Shear, “Temperature-Dependent Skin Disorders,” Journal of the American Academy of Dermatology, Vol. 18, No. 5, 1988, pp. 1003-1019. doi:10.1016/S0190-9622(88)70098-5
[71] M. Berg, “Epidemiological Studies of Influence of Sunlight on the Skin,” Photo-Dermatology, Vol. 6, No. 2, 1989, pp. 80-84.
[72] J. A. Bain, H. P. Rusch and B. E. Kline, “The Effect of Temperature upon Ultraviolet Carcinogenesis with Wavelength 2,800-3,400A,” Cancer Research, Vol. 3, 1943, pp. 610-612.
[73] M. Odunze, D. S. Rosenberg and J. W. Few, “Periorbital Aging and Ethnic Considerations: A Focus on Leteral Canthal Complex,” Plastic & Reconstructive Surgery, Vol. 121, No. 3, 2008, pp. 1002-1008. doi:10.1097/01.prs.0000299381.40232.79
[74] C. Guinot, D. J. Malvy, L. Ambroisine, J. Latreille, E. Mauger, M. Tenenhaus, F. Morizot, S. Lopez, I. LeFur and E. Tschachler, “Relative Contribution of Intrinsic vs. Extrinsic Factors to Skin Aging as Determined by a Validated Skin Age Score,” Archives of Dermatology, Vol. 138, No. 11, 2002, pp. 1454-1460. doi:10.1001/archderm.138.11.1454
[75] H. Nagashima, K. Hanada and I. Hashimoto, “Correlation of Skin Phototype with Facial Wrinkle Formation,” Photodermatology, Photoimmunology & Photomedicine, Vol. 15, 1999, pp. 2-6. doi:10.1111/j.1600-0781.1999.tb00044.x
[76] A. V. Rawlings, “Ethnic Skin Types: Are There Differences in Skin Structure and Function? Review Article, ” International Journal of Cosmetic Science, Vol. 28, No. 2, 2006, pp. 79-93. doi:10.1111/j.1467-2494.2006.00302.x
[77] T. Tsukahara, T. Fujimura, Y. Yoshida, T. Kitahara, M. Hotta, S. Moriwaki, P. S. Witt, F. A. Simion and Y. Takema, “Comparison of Age-Related Changes in Wrinkling and Sagging of the Skin in Caucasian Females and in Japanese Females,” Journal of Cosmetic Science, Vol. 55, No. 4, 2004, pp. 373-385.
[78] E. M. Aly and E. S. Mohamed, “Effect of Infrared Radiation on the Lens,” Indian Journal of Ophthalmology, Vol. 59, No. 2, 2011, pp. 97-101. doi:10.4103/0301-4738.77010
[79] E. Lydahl, “Infrared Radiation and Cataract,” Acta Ophthalmologica. Supplementum, Vol. 166, 1984, pp. 1-63.
[80] M. M. Zaret, W. Z. Snyder and L. Birenbaum, “Cataract after Exposure to Non-Ionizing Radiant Energy,” British Journal of Ophthalmology, Vol. 60, No. 9, 1976, pp. 632-637. doi:10.1136/bjo.60.9.632

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.