Cyclophosphamide induces an early wave of acrolein-independent apoptosis in the urothelium

Abstract

Hemorrhagic cystitis (HC) affects a significant number of patients undergoing cyclophosphamide (CP) chemotherapy despite treatment with 2-mercaptoethane sulfonate (Mesna) to inactivate the metabolite acrolein. While the mechanism is unknown, there is clearly acrolein-independent damage to the urothelium. In this study we have explored the induction of apoptosis in the urothelium as a marker of damage and the mechanism underlying the acrolein-independent apoptosis. Two waves of apoptosis (measured as caspase-3/7 activity and Poly (ADP-ribosyl) polymerase (PARP) cleavage) were detected following CP administration, one peaking at 2 h and a second at 48 h. The first wave was not blocked by Mesna, indicating it was independent of acrolein. Caspase-1 was also active at 2 h and activation of caspase-3/7 was blocked by a caspase-1 inhibitor, but not an IL-1 receptor antagonist, suggesting the direct activation of caspase-3/7 by caspase-1 without the need for IL-1 as an intermediate. Our results indicate that CP initiates an early, acrolein-independent wave of apoptosis that results from direct cleavage of caspase-3/7 by caspase-1.

Share and Cite:

Hughes, F. , Corn, A. , Nimmich, A. , Pratt-Thomas, J. and Purves, J. (2013) Cyclophosphamide induces an early wave of acrolein-independent apoptosis in the urothelium. Advances in Bioscience and Biotechnology, 4, 9-14. doi: 10.4236/abb.2013.48A2002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hu, R.Q., Mehter, H., Nadasdy, T., Satoskar, A., Spetie, D.N., Rovin, B.H. and Hebert, L. (2008) Severe hemorrhagic cystitis associated with prolonged oral cyclophosphamide therapy: Case report and literature review. Rheumatology International, 28, 1161-1164. doi:10.1007/s00296-008-0581-0
[2] Haselberger, M.B. and Schwinghammer, T.L. (1995) Efficacy of mesna for prevention of hemorrhagic cystitis after high-dose cyclophosphamide therapy. The Annals of Pharmacotherapy, 29, 918-921.
[3] Cesaro, S., Hirsch, H.H., Faraci, M., Owoc-Lempach, J., Beltrame, A., Tendas, A., Baltadakis, I., Dalle, J.H., Koc, Y., Toporski, J., Styczynski, J., Yesilipek, M.A., Heinz, W., Caniglia, M., Rascon, J., Fauser, A.A., Michallet, M., Lopez-Corral, L., Neuburger, S., Tridello, G. and Einsele, H. (2009) Cidofovir for BK virus-associated hemorrhagic cystitis: A retrospective study. Clinical Infectious Diseases, 49, 233-240. doi:10.1086/599829
[4] Dropulic, L.K. and Jones, R.J. (2008) Polyomavirus BK infection in blood and marrow transplant recipients. Bone Marrow Transplant, 41, 11-18. doi:10.1038/sj.bmt.1705886
[5] Harkensee, C., Vasdev, N., Gennery, A.R., Willetts, I.E. and Taylor, C. (2008) Prevention and management of BK-virus associated haemorrhagic cystitis in children following haematopoietic stem cell transplantation—A systematic review and evidence-based guidance for clinical management. British Journal of Haematology, 142, 717-731. doi:10.1111/j.1365-2141.2008.07254.x
[6] Megged, O., Stein, J., Ben-Meir, D., Shulman, L.M., Yaniv, I., Shalit, I. and Levy, I. (2011) BK-virus-associated hemorrhagic cystitis in children after hematopoietic stem cell transplantation. Journal of Pediatric Hematology/Oncology, 33, 190-193. doi:10.1097/MPH.0b013e3181fce388
[7] Silva Lde, P., Patah, P.A., Saliba, R.M., Szewczyk, N.A., Gilman, L., Neumann, J., Han, X.Y., Tarrand, J., Ribeiro, R., Gulbis, A., Shpall, E.J., Jones, R., Popat, U., Walker, J.A., Petropoulos, D., Chiattone, A., Stewart, J., El-Zimaity, M. anderlini, P., Giralt, S., Champlin, R.E. and de Lima, M. (2010) Hemorrhagic cystitis after allogeneic hematopoietic stem cell transplants is the complex result of BK virus infection, preparative regimen intensity and donor type. Haematologica, 95, 1183-1190. doi:10.3324/haematol.2009.016758
[8] Henao-Mejia, J., Elinav, E., Strowig, T. and Flavell, R.A. (2012) Inflammasomes: Far beyond inflammation. Nature Immunology, 13, 321-324. doi:10.1038/ni.2257
[9] Gross, O., Thomas, C.J., Guarda, G. and Tschopp, J. (2011) The inflammasome: An integrated view. Immunological Reviews, 243, 136-151. doi:10.1111/j.1600-065X.2011.01046.x
[10] Hughes, F.M., Jr., McKeithan, P., Ellett, J., Armeson, K.E. and Purves, J.T. (2013) Simvastatin suppresses cyclophosphamide-induced changes in urodynamics and bladder inflammation. Urology, 81, e209-e209, e214. doi:10.1016/j.urology.2012.08.041
[11] Kanat, O., Kurt, E., Yalcinkaya, U., Evrensel, T. and Manavoglu, O. (2006) Comparison of uroprotective efficacy of mesna and amifostine in cyclophosphamide-induced hemorrhagic cystitis in rats. Indian Journal of Cancer, 43, 12-15. doi:10.4103/0019-509X.25769
[12] Kyung, Y.S., Park, H.Y. and Lee, G. (2011) Preservation of uroplakins by 2-mercaptoethanesulfonate in cyclophosphamide-induced rat cystitis. Archives of Toxicology, 85, 51-57. doi:10.1007/s00204-010-0523-y
[13] Haefliger, J.A., Tissieres, P., Tawadros, T., Formenton, A., Beny, J.L., Nicod, P., Frey, P. and Meda, P. (2002) Connexins 43 and 26 are differentially increased after rat bladder outlet obstruction. Experimental Cell Research, 274, 216-225. doi:10.1006/excr.2001.5465
[14] Masui, T., Mann, A.M., Macatee, T.L., Okamura, T., Garland, E.M., Smith, R.A. and Cohen, S.M. (1992) Absence of ras oncogene activation in rat urinary bladder carcinomas induced by N-methyl-N-nitrosourea or N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis, 13, 2281-2285. doi:10.1093/carcin/13.12.2281
[15] Hughes, F.M., Jr., Bortner, C.D., Purdy, G.D. and Cidlowski, J.A. (1997) Intracellular K+ suppresses the activation of apoptosis in lymphocytes. The Journal of Biological Chemistry, 272, 30567-30576. doi:10.1074/jbc.272.48.30567
[16] Rosen, A. and Casciola-Rosen, L. (1997) Macromolecular substrates for the ICE-like proteases during apoptosis. Journal of Cellular Biochemistry, 64, 50-54. doi:10.1002/(SICI)1097-4644(199701)64:1<50::AID-JCB8>3.0.CO;2-Z
[17] Bagley, C.M.J., Bostick, F.W. and DeVita, V.T.J. (1973) Clinical pharmacology of cyclophosphamide. Cancer Research, 33, 226-233.
[18] Lamkanfi, M. and Kanneganti, T.D. (2010) Caspase-7: A protease involved in apoptosis and inflammation. The International Journal of Biochemistry & Cell Biology, 42, 21-24. doi:10.1016/j.biocel.2009.09.013
[19] Van de Craen, M., Declercq, W., Van den brande, I., Fiers, W. and Vandenabeele, P. (1999) The proteolytic procaspase activation network: An in vitro analysis. Cell Death & Differentiation, 6, 1117-1124. doi:10.1038/sj.cdd.4400589
[20] Ferdaoussi, M., Abdelli, S., Yang, J.Y., Cornu, M., Niederhauser, G., Favre, D., Widmann, C., Regazzi, R., Thorens, B., Waeber, G. and Abderrahmani, A. (2008) Exendin-4 protects beta-cells from interleukin-1 beta-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes, 57, 1205-1215. doi:10.2337/db07-1214
[21] Li, L., El-Kholy, W., Rhodes, C.J. and Brubaker, P.L. (2005) Glucagon-like peptide-1 protects beta cells from cytokine-induced apoptosis and necrosis: Role of protein kinase B. Diabetologia, 48, 1339-1349. doi:10.1007/s00125-005-1787-2
[22] Arms, L., Girard, B.M. and Vizzard, M.A. (2010) Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Renal Physiology: American Journal of Physiology, 298, F589-F600. doi:10.1152/ajprenal.00628.2009
[23] Corrow, K.A. and Vizzard, M.A. (2007) Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 293, R125-134. doi:10.1152/ajpregu.00857.2006
[24] Jezernik, K., Romih, R., Mannherz, H.G. and Koprivec, D. (2003) Immunohistochemical detection of apoptosis, proliferation and inducible nitric oxide synthase in rat urothelium damaged by cyclophosphamide treatment. Cell Biology International, 27, 863-869. doi:10.1016/S1065-6995(03)00175-6
[25] Du, T., Zhou, G. and Roizman, B. (2012) Induction of apoptosis accelerates reactivation of latent HSV-1 in ganglionic organ cultures and replication in cell cultures. Proceedings of the National Academy of Sciences USA, 109, 14616-14621. doi:10.1073/pnas.1212661109
[26] Hunsperger, E.A. and Wilcox, C.L. (2003) Caspase-3-dependent reactivation of latent herpes simplex virus type 1 in sensory neuronal cultures. Journal of NeuroVirology, 9, 390-398. doi:10.1080/13550280390201678
[27] Babel, N., Volk, H.D. and Reinke, P. (2011) BK polyomavirus infection and nephropathy: The virus-immune system interplay. Nature Reviews, 7, 399-406. doi:10.1038/nrneph.2011.59
[28] Miller, A.N., Glode, A., Hogan, K.R., Schaub, C., Kramer, C., Stuart, R.K. and Costa, L.J. (2011) Efficacy and safety of ciprofloxacin for prophylaxis of polyomavirus BK virus-associated hemorrhagic cystitis in allogeneic hematopoietic stem cell transplantation recipients. Biology of Blood and Marrow Transplantation, 17, 1176-1181. doi:10.1016/j.bbmt.2010.12.700

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.