Ubiquitous expression of Sry induces embryonic lethality related to suppression of Tie2/Tek expression

Abstract

Sry (sex-determining region on the Y chromosome) is a mammalian sex-determining gene on the Y chromosome. In mice, the transient expression of Sry in supporting cell precursor cells between 10.5 and 12.5 days post-coitus (dpc) triggers the differentiation of Sertoli cells from granulosa cells. The importance of the strict regulation of Sry expression remains unknown. Thus, we attempted to produce a Sry ubiquitous-expressing transgenic (Tg) mouse in which foreign Sry is driven by the CAG (cytomegalovirus immediate-early enhancer, chicken beta-actin promoter, and the fusion intron of chicken beta-actin and rabbit beta-globin)-Sry gene for ubiquitous expressing Sry. A low rate (2/127) of Tg pups was observed, whereas the rate of early-stage transgenic embryos before birth was 19.2% (5/26). The Sry ubiquitous-expressing embryos showed abnormal development. The results suggest that ubiquitous expression of Sry exerts a negative effect on embryonic development. One of the two adult Tg mice showed low levels of Sry expression. The other Tg mouse showed high Sry transgene expression, but was mosaic for the transgene. Developmental analysis of transgenic F1 embryos produced from the mosaic Tg mouse revealed that ubiquitous expression of Sry had a lethal effect on embryonic development around 12.5 dpc. The histological data indicated that ubiquitous expression of Sry induced abnormal cardiovascular development, resulting in embryonic death. Enhanced expression of Sry suppressed endogenous Tie2/Tek (tyrosine kinase with Ig and EGF homology domains 2/tunica interna endothelial cell kinase) expression in Sry-transfected primary cultured cells from wild type embryonic hearts. The results indicate that the tissue-specific and stage-specific expression of Sry is essential for normal embryogenesis.

Share and Cite:

Yoshida, K. , Ito, M. , Yokouchi, K. , Kano, K. , Naito, K. and Tojo, H. (2010) Ubiquitous expression of Sry induces embryonic lethality related to suppression of Tie2/Tek expression. Advances in Bioscience and Biotechnology, 1, 444-452. doi: 10.4236/abb.2010.15058.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. and Lovell-Badge, R. (1991) Male development of chromosomally female mice transgenic for Sry. Nature, 351(6332), 117-121.
[2] Hacker, A., Capel, B., Goodfellow, P. and Lovell-Badge, R. (1995) Expression of Sry, the mouse sex determining gene. Development, 121(6), 1603-1614.
[3] Bullejos, M. and Koopman, P. (2001) Spatially dynamic expression of Sry in mouse genital ridges. Developmental Dynamics, 221(2), 201-205.
[4] Albrecht, K.H. and Eicher, E.M. (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Developmental Biology, 240(1), 92-107.
[5] Ito, M., Yokouchi, K., Yoshida, K., Kano, K., Naito, K., Miyazaki, J. and Tojo, H. (2006) Investigation of the fate of Sry-expressing cells using an in vivo Cre/loxP system. Development Growth and Differentiation, 48(1), 41-47.
[6] Shen, W.H., Moore, C.C., Ikeda, Y., Parker, K.L. and Ingraham, H.A. (1994) Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell, 77(5), 651-661.
[7] Toyooka, Y., Tanaka, S.S., Hirota, O., Tanaka, S., Takagi, N., Yamanouchi, K., Tojo, H. and Tachi, C. (1998) Wilms' tumor suppressor gene (WT1) as a target gene of SRY function in a mouse ES cell line transfected with SRY. International Journal of Developmental Biology, 42(8), 1143-1151.
[8] Hsu, S.Y., Kubo, M., Chun, S.Y., Haluska, F.G., Housman, D.E. and Hsueh, A.J. (1995) Wilms' tumor protein WT1 as an ovarian transcription factor: decreases in expression during follicle development and repression of inhibin-alpha gene promoter. Molecular Endocrinology, 9(10), 1356-1366.
[9] Musterberg, A. and Lovell-Badge, R. (1991) Expression of the mouse anti-mulerian hormone gene suggests a role in both male and female sexual differentiation. Development, 113(2), 613-624.
[10] De Santa Barbara, P., Bonneaud, N., Boizet, B., Desclozeaux, M., Moniot, B., Sudbeck, P., Scherer, G., Poulat, F. and Berta, P. (1998) Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Mulerian hormone gene. Molecular and Cellular Biology, 18(11), 6653-6665.
[11] Dolci, S., Grimaldi, P., Geremia, R., Pesce, M. and Rossi, P. (1997) Identification of a promoter region generating Sry circular transcripts both in germ cells from male adult mice and in male mouse embryonal gonads. Biology of Reproduction, 57(5), 1128-1135.
[12] Ito, M., Yokouchi, K., Naito, K., Endo, H., Hakamata, Y., Miyazaki, J. and Tojo, H. (2002) In vitro Cre/loxP system in cells from developing gonads: investigation of the Sry promoter. Development Growth and Differentiation, 44(6), 549-557.
[13] Yokouchi, K., Ito, M., Nishino, K., Yamanouchi, K., Naito, K., Suzawa, M., Kato, S., Hakamata, Y., Endo, H. and Tojo, H. (2003) Stage-specific regulatory element of mouse Sry gene. Molecular Reproduction and Development, 64(4), 389-396.
[14] Ito, M., Yokouchi, K., Naito, K., Endo, H., Hakamata, Y., Miyazaki, J. and Tojo, H. (2005) Detection of elements responsible for stage- and tissue-specific expression of mouse Sry using an in vitro Cre/loxP system. Biochemical and Biophysical Research Communications, 337(1), 264-270.
[15] Kidokoro, T., Matoba, S., Hiramatsu, R., Fujisawa, M., Kanai-Azuma, M., Taya, C., Kurohmaru, M., Kawakami, H., Hayashi, Y., Kanai, Y. and Yonekawa, H. (2005) Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Developmental Biology, 278(2), 511-525.
[16] Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K., Wilhelm, D., Koopman, P. and Kanai, Y. (2009) A critical time window of Sry action in gonadal sex determination in mice. Development, 136(1), 129-138.
[17] Ikeda, K., Nukumi, N., Iwamori, T., Osawa, M., Naito, K. and Tojo, H. (2004) Inhibitory function of whey acidic protein in the cell-cycle progression of mouse mammary epithelial cells (EpH4/K6 cells). Journal of Reproduction and Development, 50(1), 87-96.
[18] Nukumi, N., Ikeda, K., Osawa, M., Iwamori, T., Naito, K. and Tojo, H. (2004) Regulatory function of whey acidic protein in the proliferation of mouse mammary epithelial cells in vivo and in vitro. Developmental Biology, 274(1), 31-44.
[19] Iwamori, T., Oosawa, M., Nukumi, N., Kano, K., Sudo, K., Naito, K. and Tojo, H. (2005) Aberrant development of mammary glands, but precocious expression of beta-casein in transgenic females ubiquitously expressing whey acidic protein transgene. Journal of Reproduction and Development, 51(5), 579-592.
[20] Niwa, H., Yamamura, K. and Miyazaki, J. (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 108(2), 193-199.
[21] Hogan, B., Constantini, F. and Lacy, E. (1994) Manipulating the mouse embryo, 2nd edn. New York: Cold Spring Harbor Laboratory Press.
[22] Ito, M., Miyagishi, M., Murata, C., Kawasaki, H., Baba, T., Tachi, C. and Taira, K. (2006) Down-regulation of endogenous Wt1 expression by Sry transgene in the murine embryonic mesonephros-derived M15 cell line. Journal of Reproduction and Development, 52(3), 415-427.
[23] Kato, M., Yamanouchi, K., Ikawa, M., Okabe, M., Naito, K. and Tojo, H. (1999) Efficient selection of transgenic mouse embryos using EGFP as a marker gene. Molecular Reproduction and Development, 54(1), 43-48.
[24] Seo, B.B., Kim, C.H., Yamanouchi, K., Takahashi, M., Sawasaki, T., Tachi, C. and Tojo, H. (2000) Co-injection of restriction enzyme with foreign DNA into the pronucleus for elevating production efficiencies of transgenic animals. Animal Reproduction Science, 63(1-2), 113-122.
[25] Kubo, J., Yamanouchi, K., Naito, K. and Tojo, H. (2002) Expression of the gene of interest fused to the EGFP-expressing gene in transgenic mice derived from selected transgenic embryos. Journal of Experimental Zoology, 293(7), 712-718.
[26] Ito, M., Yamanouchi, K., Naito, K. Calos, M.P. and Tojo, H. Site-specific integration of transgene targeting an endogenous lox-like site in early mouse embryos. Journal of Applied Genetics, in press.
[27] Pannetier, M., Tilly, G., Kocer, A., Hudrisier, M., Renault, L., Chesnais, N., Costa, J., Le Provost, F., Vaiman, D., Vilotte, J.L. and Pailhoux, E. (2006) Goat SRY induces testis development in XX transgenic mice. FEBS Letters, 580(15), 3715-3720.
[28] Fong, G.H., Rossant, J., Gertsenstein, M. and Breitman, M.L. (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66-70.
[29] Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.F., Breitman, M.L. and Schuh, A.C. (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62-66.
[30] Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K.S., Powell-Braxton, L., Hillan, K.J. and Moore, M.W. (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573), 439-442.
[31] Dumont, D.J., Gradwohl, G., Fong, G.H., Puri, M.C., Gertsenstein, M., Auerbach, A. and Breitman, M.L. (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes and Development, 8(16), 1897-1909.
[32] Suri, C., Jones, P.F., Patan, S., Bartunkova, S., Maisonpierre, P.C., Davis, S., Sato, T.N., Yancopoulos, G.D. (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 87(7), 1171-1180.
[33] Fadel, B.M., Boutet, S.C. and Quertermous, T. (1998) Functional analysis of the endothelial cell-specific Tie2/Tek promoter identifies unique protein-binding elements. Biochemical Journal, 330(1), 335-343.
[34] Fadel, B.M., Boutet, S.C. and Quertermous, T. (1999) Octamer-dependent in vivo expression of the endothelial cell-specific TIE2 gene. Journal of Biological Chemistry, 274(29), 20376-20383.
[35] Bowles, J., Schepers, G. and Koopman, P. (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology, 227(2), 239-255.
[36] Zhang, C., Basta, T. and Klymkowsky, M.W. (2005) SOX7 and SOX18 are essential for cardiogenesis in Xenopus. Developmental. Dynamics. 234(4), 878-891.
[37] Young, N., Hahn, C.N., Poh, A., Dong, C., Wilhelm, D., Olsson, J., Muscat, G.E., Parsons, P., Gamble, J.R. and Koopman, P. (2006) Effect of disrupted SOX18 transcription factor function on tumor growth, vascularization, and endothelial development. Journal of National Cancer Institute, 98(15), 1060-1067.
[38] Matsui, T., Kanai-Azuma, M., Hara, K., Matoba, S., Hiramatsu, R., Kawakami, H., Kurohmaru, M., Koopman, P. and Kanai, Y. (2006) Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. Journal of Cellular Science, 119(17), 3513-3526.
[39] Sakamoto, Y., Hara, K., Kanai-Azuma, M., Matsui, T., Miura, Y., Tsunekawa, N., Kurohmaru, M., Saijoh, Y., Koopman, P. and Kanai, Y. (2007) Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochemical Biophysical Research Communications, 360(3), 539-544.
[40] Liu, Y., Asakura, M., Inoue, H., Nakamura, T., Sano, M., Niu, Z., Chen, M., Schwartz, R.J. and Schneider, M.D. (2007) Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proceedings of the National Academy of Sciences, U S A, 104(10), 3859-3864.
[41] Francois, M., Caprini, A., Hosking, B., Orsenigo, F., Wilhelm, D., Browne, C., Paavonen, K., Karnezis, T., Shayan, R., Downes, M., Davidson, T., Tutt, D., Cheah, K.S., Stacker, S.A., Muscat, G.E., Achen, M.G., Dejana, E. and Koopman, P. (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature, 456(7222), 643-647.
[42] Hosking, B., Francois, M., Wilhelm, D., Orsenigo, F., Caprini, A., Svingen, T., Tutt, D., Davidson, T., Browne, C., Dejana, E. and Koopman, P. (2009) Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. Development, 136(14), 2385-2391.
[43] Pennisi, D., Gardner, J., Chambers, D., Hosking, B., Peters, J., Muscat, G., Abbott, C. and Koopman, P. (2000) Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nature Genetics, 24(4), 434-437.
[44] James, K., Hosking, B., Gardner, J., Muscat, G.E. and Koopman, P. (2003) Sox18 mutations in the ragged mouse alleles ragged-like and opossum. Genesis, 36(1), 1-6.
[45] Downes, M., Koopman, P. (2001) SOX18 and the transcriptional regulation of blood vessel development. Trends in Cardiovascular Medicine, 11(8), 318-324.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.