Chemical Structure of TiO Organometallic Particles Obtained by Plasma

Download Download as PDF (Size:649KB)  HTML    PP. 229-235  
DOI: 10.4236/anp.2013.23032    2,565 Downloads   4,862 Views   Citations


This work presents a study about the chemical structure of titanium oxide (TiO) particles synthesized by plasmas using titanium tetrapropoxide, Ti(-O-CH2-CH2-CH3)4. In plasmas, practically all chemical bonds are susceptible to participate in the reactions producing different results than those obtained by the traditional chemical routes. The particles obtained this way are semispheres and fibers grouped in random and layered structures in the 120-500 nm interval and mean diameter of 86.4 nm (fibers) and 308.6 nm (semispheres). The analysis of the resulting TiO structure was performed by IR and XPS finding that the main chemical state of Ti in these conditions was O2-Ti-O2 (Ti surrounded by O) which is part of the precursor structure, however, in O, the main chemical state was Ti-O-Ti formed with the rupture of the pre- cursor Ti-O-C bonds. These last bonds reduce the conjugation between the structure of both elements, O2-Ti-O2 and Ti-O-Ti, to produce organometallic compounds. Other chemical states appeared showing consecutive dehydrogenation steps during the synthesis with the formation of multiple bonds as a consequence of the continuous collisions in the plasma. These results allow us to follow the chemical reactions promoted by this kind of plasmas to produce TiO nanoparticles which are essentially conformed of intensive dehydrogenation.

Cite this paper

Olayo, M. , González-Salgado, F. , Cruz, G. , Gómez, L. , García-Rosales, G. , Gonzalez-Torres, M. and Lopez-Gracia, O. (2013) Chemical Structure of TiO Organometallic Particles Obtained by Plasma. Advances in Nanoparticles, 2, 229-235. doi: 10.4236/anp.2013.23032.


[1] M. G. Olayo, J. Morales, G. J. Cruz, R. Olayo, E. Ordonez and S. R. Barocio, “On the Influence of Ele ctron Energy on Iodine-Doped Polyaniline Formation by Plasma Polymerization,” Journal of Polymer Science Part B: Polymer Physics, Vol. 39, No. 1, 2001, pp. 175-183. doi:10.1002/1099-0488(20010101)39:1<175::AID-POLB160>3.0.CO;2-#
[2] R. Valencia, R. Lopez, S. R. Barocio, A. Mercado, R. Pena, A. Munoz, E. A. de la Piedad and J. M. de la Rosa, “TiO2 Films in the Rutile and Anatase Phases Produced by Inductively Coupled RF Plasmas,” Surface and Coatings Technology, Vol. 204, No. 18-19, 2010, pp. 3078-3081. doi:10.1016/j.surfcoat.2010.02.059
[3] R. Szabova, L. Cernakova, M. Wolfova and M. Cernak, “Coating of TiO2 Nanoparticles on the Plasma Acti vated Polypropylene Fibers,” Acta Chimica Slovaca, Vol. 2, No. 1, 2009, pp. 70-76.
[4] S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Susuki and S. Yoshikawa, “Synthesis, Characterization, Photocatalytic Activity and Dye-Sensitized Solar Cell Performance of Nanorods/Nanoparticles TiO2 with Me soporous Structure,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 184, No. 1-2, 2006, pp. 163-169. doi:10.1016/j.jphotochem.2006.04.010
[5] H. Porthault, F. Le Cras and S. Franger, “Synthesis of LiCoO2 Thin Films by Sol/Gel Process,” Journal of Power Sources, Vol. 195, No. 19, 2010, pp. 6262-6267. doi:10.1016/j.jpowsour.2010.04.058
[6] C. Jin, R. Y. Zheng, Y. Guo, J. L. Xie, Y. X. Zhu and Y. C. Xie, “Hydrothermal Synthesis and Characterization of Phosphorous-Doped TiO2 with High Photocatalytic Activity for Methylene Blue Degradation,” Journal of Molecular Catalysis A: Chemical, Vol. 313, No. 1-2, 2009, pp. 44-48. doi:10.1016/j.molcata.2009.07.021
[7] R. Kripal, A. K. Gupta, S. K. Mishra, R. K. Srivastava, A. C. Pandey and S. G. Prakash, “Photoluminescence and Photoconductivity of ZnS:Mn2+ Nanoparticles Syn thesized via Co-Precipitation Method,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 76, No. 5, 2010, pp. 523-530. doi:10.1016/j.saa.2010.04.018
[8] C.-H. Huang, Y.-T. Yang and R.-A. Doong, “Micro wave-Assisted Hydrothermal Synthesis of Mesoporous Anatase TiO2 via Sol-Gel Process for Dye-Sensitized Solar Cells,” Microporous and Mesoporous Materials, Vol. 142, No. 2, 2011, pp. 473-480. doi:10.1016/j.micromeso.2010.12.038
[9] J. K. Ani, S. Savithri and G. D. Surender, “Characteris tics of Titania Nanoparticles Synthesized through Low Temperature Aerosol Process,” Aerosol and Air Quality Research, Vol. 5, No. 1, 2005, pp. 1-13.
[10] W. Li, S. I. Shah, M. Sung and C.-P. Huang, “Structure and Size Distribution of TiO2 Nanoparticles Deposited on Stainless Steel Mesh,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Stru ctures, Vol. 20, No. 6, 2002, pp. 2303-2308. doi:10.1116/1.1520557
[11] M. G. Olayo, M. L. Arreola, G. J. Cruz, G. Garcia-Ro sales, S. Gonzalez-Castillo, L. M. Gomez and M. Gon zalez-Torres, “Synthesis of Ti-O Superficial Compos ites by Plasmas of Titanium Tetraisopropoxide,” Mac romolecular Symposia, Vol. 325-326, No. 1, 2013, pp. 105-111. doi:10.1002/masy.201200047
[12] C. Massard, D. Bourdeaux, V. Raspal, E. Feschet-Cha ssot, Y. Sibaud, E. Caudron, T. Devers and K. O. Awi tor, “One-Pot Synthesis of TiO2 Nanoparticles in Sus pensions for Quantification of Titanium Debris Re lease in Biological Liquids,” Advances in Nanoparticles, Vol. 1, No. 3, 2012, pp. 86-94. doi:10.4236/anp.2012.13012
[13] M. Gouda and A. I. Aljaafari, “Augmentation of Multi functional Properties of Cellulosic Cotton Fabric Using Titanium Dioxide Nanoparticles,” Advances in Nano particles, Vol. 1, No. 3, 2012, pp. 29-36.
[14] R. Valencia-Alvarado, R. Lopez-Callejas, S. R. Barocio, A. Mercado-Cabrera, R. Pena-Eguiluz, A. E. Munoz Castro, A. Piedad-Beneitez and J. M. Rosa-Vazquez, “Titanium Oxidation by RF Inductively Coupled Plas ma,” International Journal of Nanomanufacturing, Vol. 5, No. 1-2, 2010, pp. 62-68. doi:10.1504/IJNM.2010.029923
[15] C. Chen, H. Bai, H. M. Chein and T. M. Chen, “Con tinuous Generation of TiO2 Nanoparticles by an At mospheric Pressure Plasma-Enhanced Process,” Aero sol Science and Technology, Vol. 41, No. 11, 2007, pp. 1018-1028. doi:10.1080/02786820701694355
[16] F. Gonzalez-Salgado, M. G. Olayo, G. J. Cruz, L. M. Gomez, E. Ordonez and G. Garcia-Rosales, “Synthesis of Titanium Oxide Nanoparticles by Plasma,” Super ficies y Vacio, Vol. 25, No. 1, 2012, pp. 56-59.
[17] F. Gonzalez-Salgado, G. J. Cruz, M. G. Olayo, G. Garcia-Rosales and L. M. Gomez, “Organometallic Titanium Oxides Obtained by Low-Pressure Plasmas of Water on Titanium Tetrapropoxide,” Advances in Materials Physics and Chemistry, Vol. 2, No. 4, 2012, pp. 212-218. doi:10.4236/ampc.2012.24032
[18] J. M. Hernandez, L. A. Garcia, B. H. Zeifert, R. Garcia, B. B. Zermeno, T. Del Angel and A. Cueto, “Síntesis y Caracterización de Nanopartículas de N-TiO2—Ana tasa,” Superficies y Vacio, Vol. 21, No. 4, 2008, pp. 1-5.
[19] B. V. Crist, “Advanced Peak-Fitting of Monochromatic XPS Spectra,” Journal of Surface Analysis, Vol. 4, No. 3, 1998, pp. 428-434.
[20] D. Kumar, M. S. Chen and D. W. Goodman, “Characte rization of Ultra-Thin TiO2 Films Grown on Mo(112),” Thin Solid Films, Vol. 515, No. 4, 2006, pp. 1475-1479. doi:10.1016/j.tsf.2006.04.014
[21] J. Wan, R. Q. Zhang and H. F. Cheung, “Energetics of Ti Atom Diffusion into Diamond Film,” Computation Materials Science, Vol. 23, No. 1, 2002, pp. 73-79.

comments powered by Disqus

Copyright © 2017 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.