A Theoretical Study of Light Absorption in Self Assembled Quantum Dots

Abstract

Self assembled quantum dots have shown a great promise as a leading candidate for infrared detection at room temperature. In this paper, a theoretical model of the absorption coefficient of quantum dot devices is presented. Both of bound to bound absorption and bound to continuum absorption are taken into consideration in this model. This model is based on the effective mass theory and the Non Equilibrium Greens Function (NEGF) formalism. NEGF formalism is used to calculate the bound to continuum absorption coefficient. The results of the model have been compared with a published experimental work and a good agreement is obtained. Based on the presented model, the bound to bound absorption coefficient component is compared to the bound to continuum absorption coefficient component. In addition, the effects of the dot dimensions and electron filling on the bound to continuum absorption coefficient are also investigated. In general, increasing the dot filling increases the absorption and decreasing the dots dimensions will increase the absorption and move the absorption peak towards longer wavelengths.

Share and Cite:

T. A. Ameen, Y. M. El-Batawy and A. A. Abouelsaood, "A Theoretical Study of Light Absorption in Self Assembled Quantum Dots," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 243-247. doi: 10.4236/opj.2013.32B057.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Razeghi, “Technology of Quantum Devices,” Springer, 2010. doi:10.1007/978-1-4419-1056-1
[2] P. Martyniuk and A. Rogalski, “Quantum-Dot Infrared Photodetectors: Status and Outlook,” Progress in Quantum Electronics, Vol. 32, No. 34, 2008, pp. 89–120. doi:10.1142/S0217984908016893
[3] A. L. L. Ana Beln Cristbal Lpez and A. Mart Vega, “Next Generation of Photovoltaics,” Springer, 2012. doi:10.1007/978-3-642-23369-2
[4] A. Mart, N. Lpez, E. Antoln, E. Cnovas, C. Stanley, C. Farmer,L. Cuadra, and A. Luque, “Novel Semiconductor Solar Cell Structures: The Quantum Dot Intermediate Band Solar Cell,” Thin Solid Films, Vol. 511512, pp. 638-644, 2006. doi:10.1016/j.tsf.2005.12.122
[5] S. Datta, “Quantum Transport: Atom to Transistor,” Cambridge University Press, 2005. doi:10.1017/CBO9781139164313
[6] M. A. Naser, M. J. Deen and D. A. Thompson, “Spectral Function of InAs/InGaAs Quantum Dots in A Well Detector Using Green’s Function,” Journal of Applied Physics, Vol. 100, No. 9, 2006, p. 093102. doi:10.1063/1.2372572
[7] M. A. Naser, M. J. Deen and D. A. Thompson, “Spectral Function and Responsivity of Resonant Tunneling and Superlattice Quantum Dot Infrared Photodetectors Using Green’s Function,” Journal of Applied Physics, Vol. 102, No. 8, 2007, p. 083108. doi:10.1063/1.2799075
[8] M. A. Naser, M. J. Deen and D. A. Thompson, “Theoretical Modeling of Dark Current in Quantum Dot Infrared Photodetectors Using Nonequilibrium Green’s Functions,” Journal of Applied Physics, Vol. 104, No. 1, 2008, p. 014511. doi:10.1063/1.2952014
[9] B. Kochman, A. Stiff-Roberts, S. Chakrabarti, J. Phillips, S. Krishna, J. Singh and P. Bhattacharya, “Absorption, Carrier Lifetime, and Gain in InAs-GaAs Quantum-Dot Infrared Photodetectors,” IEEE Journal of Quantum Electronics, Vol. 39, 2003, pp. 459-467. doi:10.1109/JQE.2002.808169
[10] A. M. Adawi, E. A. Zibik, L. R. Wilson, A. Lemaî tre, J. W. Cockburn, M. S. Skolnick, M. Hopkinson, G. Hill, S. L. Liew and A. G. Cullis, “Strong In-Plane Polarized InTraband Absorption in Vertically Aligned Ingaas/gaas Quantum Dots,” Applied Physics Letters, Vol. 82, No. 20, 2003, pp. 3415–3417. doi:10.1063/1.1575931
[11] K. Lantz and A. Stiff-Roberts, “Calculation of Intraband Absorption Coefficients in Organic/Inorganic Nanocomposites: Effects of Colloidal Quantum Dot Surface Ligand and Dot Size,” IEEE Journal of Quantum Electronics, Vol. 47, 2011, pp. 1420-1427. doi:10.1109/JQE.2011.2169235
[12] B. Aslan, H. C. Liu, M. Korkusinski, S.-J. Cheng and P. Hawrylak, “Response Spectra from Mid- to Far-Infrared, Polarization Behaviors, and Effects of Electron Numbers in Quantum-Dot Photodetectors,” Applied Physics Letters, Vol. 82, No. 4, 2003, pp. 630-632. doi:10.1063/1.1540728
[13] H. Lee, H. Park and T. Kim, “Formation Mode of Self-Assembled CdTe Quantum Dots Directly Grown on Gaas Substrates,” Journal of Crystal Growth, Vol. 291, No. 2, 2006, pp. 442–447. doi:10.1016/j.jcrysgro.2006.03.018
[14] S. Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge University Press, 1996. doi:10.1063/1.2807624
[15] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band Parameters for iii–v Compound Semi-conductors and Their Alloys,” Journal of Applied Physics, Vol. 89, No. 11, 2001, pp. 5815–5875. doi:10.1063/1.1368156

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.